HGCR: A Heterogeneous Graph-Enhanced Interactive Course Recommendation Scheme for Online Learning

计算机科学 图形 推荐系统 人工智能 深度学习 方案(数学) 机器学习 理论计算机科学 数学 数学分析
作者
Yufeng Wang,Dehua Ma,Jianhua Ma,Qun Jin
出处
期刊:IEEE Transactions on Learning Technologies [Institute of Electrical and Electronics Engineers]
卷期号:17: 364-374 被引量:1
标识
DOI:10.1109/tlt.2023.3314399
摘要

As one of fundamental tasks in online learning platform, Interactive Course Recommendation (ICR) aims to maximize the long-term learning efficiency of each student, through actively exploring and exploiting the student's feedbacks, and accordingly conducting personalized course recommendation. Recently, Deep Reinforcement Learning (DRL) has witnessed great application in ICR, which can gradually learn student's dynamic preference through multiple-round interactions, and meanwhile optimize the long-term benefit of student. However, when modeling the student's hidden and unknown interest, so-called latent interest, the existing DRL-based recommendation schemes didn't fully characterize and utilize the relationships among courses and other associated objects, such as teachers of courses and courses' concepts, which may hamper the system's learning of student's latent interest and lead to sub-optimal recommendation. To address the above issue, this paper proposes a novel DRL based personalized ICR scheme enhanced with the heterogeneous graph, HGCR, which smoothly combines the graph neural network with advanced deep Q-learning neural network. Specifically, the paper's contributions are threefold. First, the heterogeneous graph is explicitly built to characterize the relationships among courses, concepts, and teachers. Second, the course representation is formulated through graph attention network. Then, a student's latent interest is characterized with her/his interactive courses, which is then fed into the Double Dueling Deep Q-network (DDDQN) for interactive course recommendation. Finally, thorough experiments on two real educational datasets demonstrate the proposed framework outperforms the state-of-the-art DRL-based methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LDDD发布了新的文献求助10
刚刚
戈剌_Glaa发布了新的文献求助10
1秒前
4秒前
4秒前
5秒前
慕青应助石莫言采纳,获得10
5秒前
林g发布了新的文献求助10
6秒前
Bressanone发布了新的文献求助10
8秒前
星辰大海应助程勋航采纳,获得10
8秒前
Yippee完成签到 ,获得积分10
8秒前
萧瑟处完成签到,获得积分10
9秒前
戈剌_Glaa完成签到,获得积分10
9秒前
heavennew完成签到,获得积分10
9秒前
sqb发布了新的文献求助30
10秒前
11秒前
sqb完成签到,获得积分10
15秒前
帅气的傲松应助小孙采纳,获得10
15秒前
15秒前
18秒前
18秒前
无花果应助LDDD采纳,获得10
20秒前
511发布了新的文献求助10
21秒前
陈陈发布了新的文献求助10
22秒前
23秒前
霸气以菱完成签到,获得积分10
24秒前
今后应助锌小子采纳,获得10
24秒前
24秒前
烟花应助henzhidequxian采纳,获得10
25秒前
26秒前
27秒前
27秒前
仁爱海莲发布了新的文献求助20
27秒前
liangzhang02完成签到,获得积分10
27秒前
Owen应助壮观以松采纳,获得10
27秒前
28秒前
苹果蛋完成签到,获得积分10
30秒前
林g完成签到,获得积分10
31秒前
可爱的函函应助坚强怀绿采纳,获得10
32秒前
马xiuli发布了新的文献求助10
32秒前
liangzhang02发布了新的文献求助10
33秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Data Structures and Algorithms in Java 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3268244
求助须知:如何正确求助?哪些是违规求助? 2907783
关于积分的说明 8343269
捐赠科研通 2578150
什么是DOI,文献DOI怎么找? 1401716
科研通“疑难数据库(出版商)”最低求助积分说明 655160
邀请新用户注册赠送积分活动 634266