Multistep short-term wind power forecasting model based on secondary decomposition, the kernel principal component analysis, an enhanced arithmetic optimization algorithm, and error correction

主成分分析 核主成分分析 风电预测 希尔伯特-黄变换 风力发电 核(代数) 算法 计算机科学 维数之咒 人工神经网络 极限学习机 降维 噪音(视频) 电力系统 功率(物理) 数学 人工智能 能量(信号处理) 核方法 支持向量机 工程类 统计 物理 量子力学 组合数学 电气工程 图像(数学)
作者
Guolian Hou,Junjie Wang,Yuzhen Fan
出处
期刊:Energy [Elsevier BV]
卷期号:286: 129640-129640 被引量:37
标识
DOI:10.1016/j.energy.2023.129640
摘要

Wind power forecasting can effectively improve the energy utilization efficiency of a power system and ensure its stable operation. In this study, a novel hybrid multistep prediction model, including the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), variational mode decomposition (VMD), the kernel principal component analysis (KPCA), an enhanced arithmetic optimization algorithm (ENAOA), a bidirectional long short-term memory (BILSTM) neural network, and error correction, was designed for short-term wind power forecasting. First, the collected original wind power data were decomposed into multiple intrinsic mode functions (IMFs) through a secondary decomposition composed of the CEEMDAN and VMD, which eliminated the interactions between different components to achieve denoising. Second, the KPCA was adopted to reduce the dimensionality of the multiple IMFs by extracting the principal components, effectively reducing the complexity of the multidimensional IMF data and improving the forecasting efficiency of the proposed prediction model. Subsequently, an ENAOA was proposed based on the Sobol sequence, adaptive T-distribution, and random walk strategy to optimize the BILSTM parameters. Finally, multiple preprocessed components were predicted by the optimized BILSTM, after which error correction was performed to obtain the final prediction results, which could further reduce the forecast error of the designed prediction model. Based on two sets of data collected from a wind farm in northwest China, the simulation results of 1-step, 4-step, 7-step, and 10-step forecasting revealed that compared with other incomplete models, the various algorithms adopted in the hybrid forecasting model reduced the prediction errors to different degrees, significantly enhanced the wind power prediction performance, and validated the effectiveness and feasibility of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
银色的膜完成签到,获得积分10
刚刚
开朗洋葱完成签到,获得积分10
刚刚
刚刚
刚刚
贡菜选手完成签到,获得积分10
1秒前
聂sh发布了新的文献求助10
2秒前
2秒前
科研小狗完成签到 ,获得积分10
3秒前
呜呜完成签到,获得积分10
3秒前
星辰大海应助王元凡采纳,获得10
3秒前
氧硫硒锑铋完成签到,获得积分10
3秒前
3秒前
4秒前
贪玩的万仇完成签到,获得积分10
4秒前
4秒前
轻雨发布了新的文献求助10
4秒前
淡定从凝完成签到,获得积分10
4秒前
研友_Z33zkZ发布了新的文献求助10
5秒前
小章完成签到,获得积分10
5秒前
bangrogerxx完成签到,获得积分10
6秒前
宁静致远QY完成签到,获得积分10
6秒前
健忘的芷荷完成签到,获得积分10
6秒前
6秒前
淡定小白菜完成签到,获得积分10
7秒前
7秒前
7秒前
迷路小蚂蚁完成签到,获得积分10
8秒前
8秒前
FXQ112完成签到,获得积分20
8秒前
大方的凌波完成签到,获得积分10
8秒前
易安发布了新的文献求助30
9秒前
10秒前
属虎的华安完成签到,获得积分10
10秒前
10秒前
神明发布了新的文献求助10
10秒前
宋晓静发布了新的文献求助10
11秒前
光亮的傲白完成签到,获得积分10
11秒前
传奇3应助liufumei采纳,获得10
12秒前
hhhh完成签到 ,获得积分10
12秒前
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950365
求助须知:如何正确求助?哪些是违规求助? 3495846
关于积分的说明 11078987
捐赠科研通 3226245
什么是DOI,文献DOI怎么找? 1783653
邀请新用户注册赠送积分活动 867728
科研通“疑难数据库(出版商)”最低求助积分说明 800926