Multistep short-term wind power forecasting model based on secondary decomposition, the kernel principal component analysis, an enhanced arithmetic optimization algorithm, and error correction

主成分分析 核主成分分析 风电预测 希尔伯特-黄变换 风力发电 核(代数) 算法 计算机科学 维数之咒 人工神经网络 极限学习机 降维 噪音(视频) 电力系统 功率(物理) 数学 人工智能 能量(信号处理) 核方法 支持向量机 工程类 统计 物理 量子力学 组合数学 电气工程 图像(数学)
作者
Guolian Hou,Junjie Wang,Yuzhen Fan
出处
期刊:Energy [Elsevier]
卷期号:286: 129640-129640 被引量:21
标识
DOI:10.1016/j.energy.2023.129640
摘要

Wind power forecasting can effectively improve the energy utilization efficiency of a power system and ensure its stable operation. In this study, a novel hybrid multistep prediction model, including the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), variational mode decomposition (VMD), the kernel principal component analysis (KPCA), an enhanced arithmetic optimization algorithm (ENAOA), a bidirectional long short-term memory (BILSTM) neural network, and error correction, was designed for short-term wind power forecasting. First, the collected original wind power data were decomposed into multiple intrinsic mode functions (IMFs) through a secondary decomposition composed of the CEEMDAN and VMD, which eliminated the interactions between different components to achieve denoising. Second, the KPCA was adopted to reduce the dimensionality of the multiple IMFs by extracting the principal components, effectively reducing the complexity of the multidimensional IMF data and improving the forecasting efficiency of the proposed prediction model. Subsequently, an ENAOA was proposed based on the Sobol sequence, adaptive T-distribution, and random walk strategy to optimize the BILSTM parameters. Finally, multiple preprocessed components were predicted by the optimized BILSTM, after which error correction was performed to obtain the final prediction results, which could further reduce the forecast error of the designed prediction model. Based on two sets of data collected from a wind farm in northwest China, the simulation results of 1-step, 4-step, 7-step, and 10-step forecasting revealed that compared with other incomplete models, the various algorithms adopted in the hybrid forecasting model reduced the prediction errors to different degrees, significantly enhanced the wind power prediction performance, and validated the effectiveness and feasibility of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zz完成签到,获得积分10
1秒前
NN完成签到,获得积分10
2秒前
2秒前
梅一一完成签到,获得积分10
2秒前
WX完成签到,获得积分10
2秒前
霸霸斌完成签到 ,获得积分10
2秒前
CX完成签到 ,获得积分10
3秒前
怎么说来着完成签到,获得积分20
3秒前
福荔完成签到 ,获得积分10
4秒前
完美世界应助L-采纳,获得10
4秒前
流川枫给流川枫的求助进行了留言
4秒前
星海完成签到,获得积分10
4秒前
小杨发布了新的文献求助10
7秒前
111发布了新的文献求助10
7秒前
Goes完成签到,获得积分10
7秒前
perovskite完成签到,获得积分10
7秒前
廉不可完成签到,获得积分0
8秒前
阿超完成签到,获得积分10
9秒前
zhang111完成签到,获得积分10
9秒前
千桑客完成签到,获得积分10
10秒前
背后的穆完成签到 ,获得积分10
10秒前
臭皮完成签到,获得积分10
11秒前
刘珍荣完成签到,获得积分10
12秒前
12秒前
12秒前
宋芝恬完成签到,获得积分10
13秒前
老肖发布了新的文献求助10
13秒前
陈文学完成签到,获得积分10
13秒前
奔跑的蒲公英完成签到,获得积分10
15秒前
Steven发布了新的文献求助10
15秒前
感动清炎完成签到,获得积分10
15秒前
minibearQ完成签到,获得积分10
16秒前
17秒前
格格巫完成签到,获得积分10
17秒前
给你做个pet完成签到 ,获得积分10
18秒前
V_I_G完成签到,获得积分10
19秒前
司徒子默完成签到,获得积分10
19秒前
漂洋过海咖啡豆完成签到,获得积分10
19秒前
19秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134083
求助须知:如何正确求助?哪些是违规求助? 2784918
关于积分的说明 7769341
捐赠科研通 2440444
什么是DOI,文献DOI怎么找? 1297415
科研通“疑难数据库(出版商)”最低求助积分说明 624959
版权声明 600792