Multistep short-term wind power forecasting model based on secondary decomposition, the kernel principal component analysis, an enhanced arithmetic optimization algorithm, and error correction

主成分分析 核主成分分析 风电预测 希尔伯特-黄变换 风力发电 核(代数) 算法 计算机科学 维数之咒 人工神经网络 极限学习机 降维 噪音(视频) 电力系统 功率(物理) 数学 人工智能 能量(信号处理) 核方法 支持向量机 工程类 统计 物理 量子力学 组合数学 电气工程 图像(数学)
作者
Guolian Hou,Junjie Wang,Yuzhen Fan
出处
期刊:Energy [Elsevier BV]
卷期号:286: 129640-129640 被引量:62
标识
DOI:10.1016/j.energy.2023.129640
摘要

Wind power forecasting can effectively improve the energy utilization efficiency of a power system and ensure its stable operation. In this study, a novel hybrid multistep prediction model, including the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), variational mode decomposition (VMD), the kernel principal component analysis (KPCA), an enhanced arithmetic optimization algorithm (ENAOA), a bidirectional long short-term memory (BILSTM) neural network, and error correction, was designed for short-term wind power forecasting. First, the collected original wind power data were decomposed into multiple intrinsic mode functions (IMFs) through a secondary decomposition composed of the CEEMDAN and VMD, which eliminated the interactions between different components to achieve denoising. Second, the KPCA was adopted to reduce the dimensionality of the multiple IMFs by extracting the principal components, effectively reducing the complexity of the multidimensional IMF data and improving the forecasting efficiency of the proposed prediction model. Subsequently, an ENAOA was proposed based on the Sobol sequence, adaptive T-distribution, and random walk strategy to optimize the BILSTM parameters. Finally, multiple preprocessed components were predicted by the optimized BILSTM, after which error correction was performed to obtain the final prediction results, which could further reduce the forecast error of the designed prediction model. Based on two sets of data collected from a wind farm in northwest China, the simulation results of 1-step, 4-step, 7-step, and 10-step forecasting revealed that compared with other incomplete models, the various algorithms adopted in the hybrid forecasting model reduced the prediction errors to different degrees, significantly enhanced the wind power prediction performance, and validated the effectiveness and feasibility of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
slaiery完成签到,获得积分20
1秒前
学渣完成签到,获得积分10
2秒前
没心情A发布了新的文献求助10
3秒前
危机的夏兰完成签到,获得积分10
3秒前
浮游应助琪琪采纳,获得10
4秒前
august发布了新的文献求助10
4秒前
4秒前
5秒前
6秒前
liuqiease发布了新的文献求助10
6秒前
在水一方应助小嘉饼饼采纳,获得10
7秒前
joo发布了新的文献求助10
8秒前
Ava应助more采纳,获得10
8秒前
把饭拼好给你完成签到 ,获得积分10
8秒前
夏末完成签到,获得积分10
10秒前
bpl应助昏睡的访冬采纳,获得20
10秒前
伶俐飞风发布了新的文献求助20
12秒前
slaiery发布了新的文献求助30
12秒前
joo完成签到,获得积分10
14秒前
15秒前
LDD发布了新的文献求助10
15秒前
浮游应助善良衬衫采纳,获得10
17秒前
浮游应助august采纳,获得10
17秒前
不皂发布了新的文献求助20
17秒前
tlf发布了新的文献求助10
20秒前
20秒前
21秒前
大气的小蜜蜂完成签到 ,获得积分10
22秒前
28秒前
昏睡的傻姑应助kirito1211采纳,获得20
29秒前
JamesPei应助思琼采纳,获得30
30秒前
31秒前
joe发布了新的文献求助20
31秒前
明荼荼发布了新的文献求助10
31秒前
31秒前
xiaofenzi发布了新的文献求助10
31秒前
苗条丹南完成签到 ,获得积分0
32秒前
云云发布了新的文献求助10
34秒前
more发布了新的文献求助10
37秒前
所所应助笑点低机器猫采纳,获得10
37秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5207263
求助须知:如何正确求助?哪些是违规求助? 4385281
关于积分的说明 13656356
捐赠科研通 4243841
什么是DOI,文献DOI怎么找? 2328389
邀请新用户注册赠送积分活动 1326091
关于科研通互助平台的介绍 1278303