Void nucleation at dislocation boundaries aided by the synergy of multiple dislocation pile-ups

成核 材料科学 空位缺陷 空隙(复合材料) 位错 凝聚态物理 结晶学 热力学 复合材料 化学 物理
作者
Ping Yang,Pengyang Zhao
出处
期刊:International Journal of Plasticity [Elsevier BV]
卷期号:171: 103779-103779 被引量:13
标识
DOI:10.1016/j.ijplas.2023.103779
摘要

Void nucleation is of great significance in understanding ductile fracture. Recent experiments have shown that voids are nucleated via vacancy condensation and dislocation boundaries are the main nucleation sites. However, it is unclear what role is played exactly by dislocation boundaries in promoting void nucleation. Here we propose a new mechanism for dislocation boundary-induced void nucleation and develop a corresponding model based on the classical nucleation theory and vacancy diffusion theory. The model suggests that void nucleation is mainly influenced by hydrostatic stress, temperature, and relative vacancy concentration, whose contributions are systematically studied. It is also suggested that the vacancy formation energy and the interaction energy of hydrostatic stress and vacancy, which are absent in the previous models and introduced in ours, exhibit a clear tendency to lower the activation free energy barrier. Analysis of the nucleation kinetic suggests that the growth rate of void depends on the vacancy diffusion coefficient and vacancy concentration; the higher the values of these parameters, the faster the growth rate of the void. The kinetic feasibility of the newly proposed mechanism is examined using three-dimensional discrete dislocation dynamics simulations. The results predict that the size of incipient voids nucleated at the dislocation boundary is ∼35 nm, which is consistent with the experimental characterization value of ∼50 nm. Finally, when the relaxation of the dislocation boundary is considered, the synergistic effect is weakened.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
22完成签到,获得积分20
1秒前
2秒前
安的沛白发布了新的文献求助10
2秒前
2秒前
帅气无招完成签到 ,获得积分20
3秒前
liu完成签到,获得积分10
4秒前
时尚白凡完成签到 ,获得积分10
5秒前
5秒前
6秒前
木木夕云发布了新的文献求助10
7秒前
7秒前
王星星完成签到,获得积分10
8秒前
8秒前
小熊熊完成签到,获得积分10
8秒前
8秒前
9秒前
安的沛白完成签到,获得积分10
9秒前
CipherSage应助terminus采纳,获得10
10秒前
12秒前
汉堡包应助年轻的大炮采纳,获得10
13秒前
yyfdqms完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
222发布了新的文献求助10
13秒前
亿亿亿亿完成签到,获得积分20
13秒前
nefu biology发布了新的文献求助10
14秒前
所所应助武雨寒采纳,获得10
15秒前
dong应助探寻采纳,获得10
15秒前
15秒前
16秒前
16秒前
yiyi完成签到,获得积分10
17秒前
17秒前
17秒前
IceyCNZ发布了新的文献求助20
17秒前
18秒前
19秒前
潇涯完成签到,获得积分10
19秒前
朱晓宇发布了新的文献求助10
19秒前
空白发布了新的文献求助10
19秒前
159发布了新的文献求助10
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975836
求助须知:如何正确求助?哪些是违规求助? 3520174
关于积分的说明 11201364
捐赠科研通 3256576
什么是DOI,文献DOI怎么找? 1798362
邀请新用户注册赠送积分活动 877539
科研通“疑难数据库(出版商)”最低求助积分说明 806426