Void nucleation at dislocation boundaries aided by the synergy of multiple dislocation pile-ups

成核 材料科学 空位缺陷 空隙(复合材料) 位错 凝聚态物理 结晶学 热力学 复合材料 化学 物理
作者
Ping Yang,Pengyang Zhao
出处
期刊:International Journal of Plasticity [Elsevier]
卷期号:171: 103779-103779 被引量:10
标识
DOI:10.1016/j.ijplas.2023.103779
摘要

Void nucleation is of great significance in understanding ductile fracture. Recent experiments have shown that voids are nucleated via vacancy condensation and dislocation boundaries are the main nucleation sites. However, it is unclear what role is played exactly by dislocation boundaries in promoting void nucleation. Here we propose a new mechanism for dislocation boundary-induced void nucleation and develop a corresponding model based on the classical nucleation theory and vacancy diffusion theory. The model suggests that void nucleation is mainly influenced by hydrostatic stress, temperature, and relative vacancy concentration, whose contributions are systematically studied. It is also suggested that the vacancy formation energy and the interaction energy of hydrostatic stress and vacancy, which are absent in the previous models and introduced in ours, exhibit a clear tendency to lower the activation free energy barrier. Analysis of the nucleation kinetic suggests that the growth rate of void depends on the vacancy diffusion coefficient and vacancy concentration; the higher the values of these parameters, the faster the growth rate of the void. The kinetic feasibility of the newly proposed mechanism is examined using three-dimensional discrete dislocation dynamics simulations. The results predict that the size of incipient voids nucleated at the dislocation boundary is ∼35 nm, which is consistent with the experimental characterization value of ∼50 nm. Finally, when the relaxation of the dislocation boundary is considered, the synergistic effect is weakened.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
九九完成签到,获得积分10
1秒前
2秒前
2秒前
SciGPT应助kirakira采纳,获得10
3秒前
3秒前
尼i完成签到,获得积分10
3秒前
3秒前
CodeCraft应助毛毛弟采纳,获得10
4秒前
4秒前
4秒前
wannada完成签到,获得积分10
5秒前
巴达天使发布了新的文献求助10
5秒前
九九发布了新的文献求助10
5秒前
6秒前
精明的忆灵完成签到,获得积分10
6秒前
小明月完成签到,获得积分10
6秒前
黄强完成签到,获得积分10
6秒前
7秒前
芽衣发布了新的文献求助10
7秒前
7秒前
hwc717296发布了新的文献求助10
7秒前
王金金完成签到,获得积分10
8秒前
8秒前
华仔应助满意的雅阳采纳,获得10
8秒前
8秒前
黄强发布了新的文献求助10
9秒前
陈啊炳发布了新的文献求助10
9秒前
顺利又菱发布了新的文献求助10
9秒前
9秒前
10秒前
自然砖家完成签到,获得积分10
11秒前
12秒前
ZXD发布了新的文献求助10
12秒前
鼠222完成签到,获得积分10
12秒前
12秒前
13秒前
刘英俊完成签到,获得积分10
13秒前
14秒前
14秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470540
求助须知:如何正确求助?哪些是违规求助? 3063510
关于积分的说明 9083726
捐赠科研通 2753934
什么是DOI,文献DOI怎么找? 1511152
邀请新用户注册赠送积分活动 698303
科研通“疑难数据库(出版商)”最低求助积分说明 698178