亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

State of Health estimation for lithium-ion batteries using Random Forest and Gated Recurrent Unit

健康状况 电池(电) 随机森林 情态动词 电压 计算机科学 锂离子电池 可靠性工程 工程类 人工智能 功率(物理) 电气工程 化学 量子力学 物理 高分子化学
作者
Xiaojuan Wang,Bing Hu,Xin Su,Lai Xu,Di Zhu
出处
期刊:Journal of energy storage [Elsevier]
卷期号:76: 109796-109796 被引量:80
标识
DOI:10.1016/j.est.2023.109796
摘要

Lithium-ion batteries are widely used in electric vehicles, energy storage and other fields, and the State of Health (SOH) estimation of lithium-ion batteries are key to ensure the safe operation of battery systems. In this paper, a method combining Empirical Modal Decomposition (EMD), Random Forest (RF) and Gated Recurrent Unit (GRU) for SOH estimation of lithium-ion batteries was proposed. In this approach, we first extracted the time interval during equal voltage increase and the time interval of equal voltage decrease as health indicators (HIs), and analyzed the correlation between the health indicators and SOH using Pearson's coefficient. After that, the empirical modal decomposition (EMD) was used to decompose the battery SOH data, and the Variance Contribution Ratio (VCR) was introduced to measure the relationship between the intrinsic modal function (imf) component and SOH. Finally, an EMD-VCR-GRU-RF based SOH estimation model was developed. The prediction results show that the EMD-VCR-GRU-RF model has the smallest prediction error and the model computation time is at least 15.84 % less than that of the EMD-VCR-GRU model. Our work effectively applies deep learning and machine learning to battery health management, balancing prediction accuracy and computational efficiency. It provides support and reference for battery health management and smart operation and maintenance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
NattyPoe发布了新的文献求助10
16秒前
wtian完成签到,获得积分10
23秒前
daguan完成签到,获得积分10
39秒前
40秒前
mmyhn发布了新的文献求助10
1分钟前
逮劳完成签到 ,获得积分10
1分钟前
星辰大海应助科研通管家采纳,获得10
1分钟前
无花果应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
哲别发布了新的文献求助10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
kukudou2发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
大个应助Dawn采纳,获得10
2分钟前
NattyPoe发布了新的文献求助10
2分钟前
2分钟前
xh完成签到 ,获得积分10
2分钟前
llin完成签到,获得积分10
2分钟前
2分钟前
2分钟前
mmyhn发布了新的文献求助10
2分钟前
llin发布了新的文献求助10
2分钟前
3分钟前
彭于晏应助田小胖采纳,获得10
3分钟前
3分钟前
OSASACB完成签到 ,获得积分10
3分钟前
3分钟前
田小胖发布了新的文献求助10
3分钟前
3分钟前
ceeray23应助悦耳的惋庭采纳,获得10
3分钟前
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639644
求助须知:如何正确求助?哪些是违规求助? 4749473
关于积分的说明 15006976
捐赠科研通 4797793
什么是DOI,文献DOI怎么找? 2563888
邀请新用户注册赠送积分活动 1522798
关于科研通互助平台的介绍 1482492