HER2GAN: Overcome the Scarcity of HER2 Breast Cancer Dataset Based on Transfer Learning and GAN Model

稀缺 乳腺癌 人工智能 机器学习 医学 雌激素受体 深度学习 学习迁移 免疫组织化学 计算机科学 癌症 肿瘤科 模式识别(心理学) 内科学 经济 微观经济学
作者
Mohammad Mobin Mirimoghaddam,Jafar Majidpour,Fakhereh Pashaei,Hossein Arabalibeik,Esmaeil Samizadeh,Nema Mohmadian Roshan,Tarik A. Rashid
出处
期刊:Clinical Breast Cancer [Elsevier BV]
卷期号:24 (1): 53-64 被引量:8
标识
DOI:10.1016/j.clbc.2023.09.014
摘要

Introduction Immunohistochemistry (IHC) is crucial for breast cancer diagnosis, classification, and individualized treatment. IHC is used to measure the levels of expression of hormone receptors (estrogen and progesterone receptors), human epidermal growth factor receptor 2 (HER2), and other biomarkers, which are used to make treatment decisions and predict how well a patient will do. The evaluation of the breast cancer score on IHC slides, taking into account structural and morphological features as well as a scarcity of relevant data, is one of the most important issues in the IHC debate. Several recent studies have utilized machine learning and deep learning techniques to resolve these issues. Materials and Methods This paper introduces a new approach for addressing the issue based on supervised deep learning. A GAN-based model is proposed for generating high-quality HER2 images and identifying and classifying HER2 levels. Using transfer learning methodologies, the original and generated images were evaluated. Results and Conclusion All of the models have been trained and evaluated using publicly accessible and private data sets, respectively. The InceptionV3 and InceptionResNetV2 models achieved a high accuracy of 93% with the combined generated and original images used for training and testing, demonstrating the exceptional quality of the details in the synthesized images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
神秘玩家发布了新的文献求助10
1秒前
科研通AI5应助星辰采纳,获得10
1秒前
4秒前
5秒前
5秒前
皮肤专硕小白一枚完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
9秒前
烟花应助Caden采纳,获得10
9秒前
Serein完成签到,获得积分10
9秒前
oooo发布了新的文献求助10
10秒前
11秒前
Sam十九完成签到 ,获得积分10
11秒前
11秒前
共享精神应助清脆的书桃采纳,获得10
11秒前
Silole发布了新的文献求助10
11秒前
旸里完成签到,获得积分10
12秒前
李李留下了新的社区评论
13秒前
迷路的幻灵完成签到,获得积分10
13秒前
13秒前
脑洞疼应助中央戏精学院采纳,获得10
13秒前
任性蓉发布了新的文献求助10
14秒前
科研通AI5应助自由山槐采纳,获得10
15秒前
15秒前
16秒前
17秒前
李爱国应助可爱的胖嘟嘟采纳,获得10
17秒前
YellowStar完成签到,获得积分10
18秒前
18秒前
18秒前
19秒前
20秒前
默默地读文献应助qiqi采纳,获得20
20秒前
21秒前
雪流星发布了新的文献求助10
21秒前
21秒前
lucky完成签到,获得积分10
22秒前
qyzhu发布了新的文献求助10
22秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740976
求助须知:如何正确求助?哪些是违规求助? 3283817
关于积分的说明 10036983
捐赠科研通 3000610
什么是DOI,文献DOI怎么找? 1646618
邀请新用户注册赠送积分活动 783804
科研通“疑难数据库(出版商)”最低求助积分说明 750427