Evolutionary Multi-objective Optimisation in Neurotrajectory Prediction

神经进化 计算机科学 进化算法 人工智能 人工神经网络 机器学习 进化计算 分类 遗传算法 卷积神经网络 算法
作者
Edgar Galván,Fergal Stapleton
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:146: 110693-110693
标识
DOI:10.1016/j.asoc.2023.110693
摘要

Machine learning has rapidly evolved during the last decade, achieving expert human performance on notoriously challenging problems such as image classification. This success is partly due to the re-emergence of bio-inspired modern artificial neural networks (ANNs) along with the availability of computation power, vast labelled data and ingenious human-based expert knowledge as well as optimisation approaches that can find the correct configuration (and weights) for these networks. Neuroevolution is a term used for the latter when employing evolutionary algorithms. Most of the works in neuroevolution have focused their attention in a single type of ANNs, named Convolutional Neural Networks (CNNs). Moreover, most of these works have used a single optimisation approach. This work makes a progressive step forward in neuroevolution for vehicle trajectory prediction, referred to as neurotrajectory prediction, where multiple objectives must be considered. To this end, rich ANNs composed of CNNs and Long-short Term Memory Network are adopted. Two well-known and robust Evolutionary Multi-objective Optimisation (EMO) algorithms, named Non-dominated Sorting Genetic Algorithm-II (NSGA-II) and Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D) are also adopted. The completely different underlying mechanism of each of these algorithms sheds light on the implications of using one over the other EMO approach in neurotrajectory prediction. In particular, the importance of considering objective scaling is highlighted, finding that MOEA/D can be more adept at focusing on specific objectives whereas, NSGA-II tends to be more invariant to objective scaling. Additionally, certain objectives are shown to be either beneficial or detrimental to finding valid models, for instance, inclusion of a distance feedback objective was considerably detrimental to finding valid models, while a lateral velocity objective was more beneficial.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
smile完成签到,获得积分10
刚刚
害羞的裘完成签到 ,获得积分10
刚刚
MQY发布了新的文献求助10
1秒前
喜东东完成签到,获得积分10
4秒前
Dream点壹完成签到,获得积分10
5秒前
billionbewater完成签到 ,获得积分10
9秒前
SciGPT应助王弈轩采纳,获得10
11秒前
隐形曼青应助文艺书雪采纳,获得10
11秒前
billionbewater关注了科研通微信公众号
12秒前
娜写年华完成签到 ,获得积分10
13秒前
不配.应助的的的的的采纳,获得10
13秒前
陶ni吉吉完成签到,获得积分10
14秒前
佳贝发布了新的文献求助10
14秒前
Doctor完成签到 ,获得积分10
14秒前
白小超人完成签到 ,获得积分10
15秒前
曾梦发布了新的文献求助10
16秒前
星点完成签到 ,获得积分10
18秒前
CodeCraft应助坚强的严青采纳,获得10
26秒前
科研通AI2S应助曾梦采纳,获得10
28秒前
生锈的柳叶刀完成签到,获得积分10
29秒前
zs完成签到 ,获得积分10
29秒前
冰语心蓝完成签到,获得积分10
29秒前
京言完成签到,获得积分10
30秒前
Orange应助忧郁若菱采纳,获得10
32秒前
天天快乐应助yu采纳,获得10
32秒前
XHH完成签到 ,获得积分10
33秒前
今后应助EMMA采纳,获得50
33秒前
西鱼徐发布了新的文献求助10
33秒前
35秒前
合适的落落完成签到 ,获得积分20
38秒前
111完成签到,获得积分10
40秒前
40秒前
深情安青应助Yvonne采纳,获得10
43秒前
blUe发布了新的文献求助10
44秒前
44秒前
Alan完成签到,获得积分10
45秒前
科研通AI2S应助ohhhh采纳,获得10
46秒前
46秒前
学术菜鸡123完成签到,获得积分10
46秒前
不配.应助jxy09156采纳,获得10
47秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143695
求助须知:如何正确求助?哪些是违规求助? 2795199
关于积分的说明 7813564
捐赠科研通 2451202
什么是DOI,文献DOI怎么找? 1304353
科研通“疑难数据库(出版商)”最低求助积分说明 627221
版权声明 601393