Sputum deposition classification for mechanically ventilated patients using LSTM method based on airflow signals

气流 朴素贝叶斯分类器 人工智能 支持向量机 工作量 计算机科学 机械通风 机器学习 通风(建筑) 模拟 医学 工程类 肺结核 病理 内科学 机械工程 操作系统
作者
Shuai Ren,Jinglong Niu,Maolin Cai,Yan Shi,Tao Wang,Zujin Luo
出处
期刊:Heliyon [Elsevier BV]
卷期号:8 (12): e11929-e11929 被引量:1
标识
DOI:10.1016/j.heliyon.2022.e11929
摘要

A novel sputum deposition classification method for mechanically ventilated patients based on the long-short-term memory network (LSTM) method was proposed in this study. A wireless ventilation airflow signals collection system was designed and used in this study. The ventilation airflow signals were collected wirelessly and used for sputum deposition classification. Two hundred sixty data groups from 15 patients in the intensive care unit were compiled and analyzed. A two-layer LSTM framework and 11 features extracted from the airflow signals were used for the model training. The cross-validations were adopted to test the classification performance. The sensitivity, specificity, precision, accuracy, F1 score, and G score were calculated. The proposed method has an accuracy of 84.7 ± 4.1% for sputum and non-sputum deposition classification. Moreover, compared with other classifiers (logistic regression, random forest, naive Bayes, support vector machine, and K-nearest neighbor), the proposed LSTM method is superior. In addition, the other advantages of using ventilation airflow signals for classification are its convenience and low complexity. Intelligent devices such as phones, laptops, or ventilators can be used for data processing and reminding medical staff to perform sputum suction. The proposed method could significantly reduce the workload of medical staff and increase the automation and efficiency of medical care, especially during the COVID-19 pandemic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
哇哈哈发布了新的文献求助10
1秒前
Cloud完成签到,获得积分10
2秒前
Dece发布了新的文献求助10
2秒前
柚子发布了新的文献求助10
2秒前
3秒前
忆年慧逝完成签到,获得积分20
5秒前
科研混混完成签到,获得积分10
5秒前
忆年慧逝发布了新的文献求助10
8秒前
Giselle发布了新的文献求助10
8秒前
慕青应助包行采纳,获得10
9秒前
1234发布了新的文献求助10
9秒前
哇哈哈完成签到,获得积分10
11秒前
bkagyin应助柚子采纳,获得10
15秒前
我有柳叶刀完成签到,获得积分10
19秒前
19秒前
Lyy完成签到,获得积分10
20秒前
魏立翔发布了新的文献求助10
20秒前
Akim应助LuoYR@SZU采纳,获得10
21秒前
野子发布了新的文献求助10
22秒前
丘比特应助拼搏飞柏采纳,获得10
24秒前
25秒前
26秒前
mm完成签到 ,获得积分10
31秒前
Hello应助violetlishu采纳,获得20
32秒前
Mong那粒沙完成签到,获得积分10
33秒前
万能图书馆应助顺利毕业采纳,获得10
33秒前
34秒前
典雅的俊驰应助LouieHuang采纳,获得10
35秒前
魏立翔完成签到,获得积分10
36秒前
Owen应助明亮飞绿采纳,获得10
36秒前
Snowychen完成签到,获得积分10
37秒前
鳄鱼大师兄完成签到,获得积分10
40秒前
诚心的康乃馨关注了科研通微信公众号
41秒前
野子完成签到,获得积分10
41秒前
Hanna2021完成签到,获得积分10
42秒前
44秒前
jinyu发布了新的文献求助20
44秒前
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Gay and Lesbian Asia 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 890
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3760366
求助须知:如何正确求助?哪些是违规求助? 3303873
关于积分的说明 10128061
捐赠科研通 3018109
什么是DOI,文献DOI怎么找? 1657426
邀请新用户注册赠送积分活动 791420
科研通“疑难数据库(出版商)”最低求助积分说明 754262