A novel glycosylation-related gene signature predicts survival in patients with lung adenocarcinoma

小桶 腺癌 生物 肺癌 基因 计算生物学 接收机工作特性 比例危险模型 DNA微阵列 肿瘤科 生物信息学 癌症 基因本体论 内科学 医学 遗传学 基因表达
作者
Jinxiao Liang,Qian Chen,Wei Gao,Da Chen,Xin-yu Qian,Jin-qiao Bi,Xingchen Lin,Bing-bing Han,Jin-Shi Liu
出处
期刊:BMC Bioinformatics [Springer Nature]
卷期号:23 (1) 被引量:3
标识
DOI:10.1186/s12859-022-05109-8
摘要

Abstract Background Lung adenocarcinoma (LUAD) is the most common malignant tumor that seriously affects human health. Previous studies have indicated that abnormal levels of glycosylation promote progression and poor prognosis of lung cancer. Thus, the present study aimed to explore the prognostic signature related to glycosyltransferases (GTs) for LUAD. Methods The gene expression profiles were obtained from The Cancer Genome Atlas (TCGA) database, and GTs were obtained from the GlycomeDB database. Differentially expressed GTs-related genes (DGTs) were identified using edge package and Venn diagram. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and ingenuity pathway analysis (IPA) methods were used to investigate the biological processes of DGTs. Subsequently, Cox and Least Absolute Shrinkage and Selection Operator (LASSO) regression analyses were performed to construct a prognostic model for LUAD. Kaplan–Meier (K–M) analysis was adopted to explore the overall survival (OS) of LUAD patients. The accuracy and specificity of the prognostic model were evaluated by receiver operating characteristic analysis (ROC). In addition, single-sample gene set enrichment analysis (ssGSEA) algorithm was used to analyze the infiltrating immune cells in the tumor environment. Results A total of 48 DGTs were mainly enriched in the processes of glycosylation, glycoprotein biosynthetic process, glycosphingolipid biosynthesis-lacto and neolacto series, and cell-mediated immune response. Furthermore, B3GNT3 , MFNG , GYLTL1B , ALG3 , and GALNT13 were screened as prognostic genes to construct a risk model for LUAD, and the LUAD patients were divided into high- and low-risk groups. K–M curve suggested that patients with a high-risk score had shorter OS than those with a low-risk score. The ROC analysis demonstrated that the risk model efficiently diagnoses LUAD. Additionally, the proportion of infiltrating aDCs (p < 0.05) and Tgds (p < 0.01) was higher in the high-risk group than in the low-risk group. Spearman’s correlation analysis manifested that the prognostic genes ( MFNG and ALG3 ) were significantly correlated with infiltrating immune cells. Conclusion In summary, this study established a novel GTs-related risk model for the prognosis of LUAD patients, providing new therapeutic targets for LUAD. However, the biological role of glycosylation-related genes in LUAD needs to be explored further.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
leeQ完成签到,获得积分10
刚刚
小虾米完成签到 ,获得积分10
1秒前
1秒前
呆呆完成签到,获得积分10
1秒前
1秒前
英俊的铭应助噼里啪啦采纳,获得10
2秒前
风中冷风完成签到,获得积分10
2秒前
Karry完成签到 ,获得积分10
2秒前
3秒前
小毛驴完成签到,获得积分10
3秒前
黄淮二傻完成签到,获得积分10
3秒前
搜集达人应助莫婼采纳,获得10
4秒前
wjwqz完成签到 ,获得积分10
4秒前
风车发布了新的文献求助10
4秒前
王王牛奶完成签到,获得积分10
4秒前
5秒前
Isaac完成签到 ,获得积分10
5秒前
yixuebing发布了新的文献求助10
5秒前
6秒前
Lanyx发布了新的文献求助10
7秒前
小吉完成签到,获得积分10
7秒前
wisteety完成签到,获得积分10
7秒前
张张包关注了科研通微信公众号
7秒前
桐桐应助糖豆豆采纳,获得10
7秒前
宁学者完成签到,获得积分10
8秒前
8秒前
靓丽念薇完成签到,获得积分10
8秒前
9秒前
小何完成签到,获得积分10
9秒前
ZZ完成签到,获得积分10
10秒前
贾克斯完成签到,获得积分10
11秒前
kkhenry发布了新的文献求助10
11秒前
风车完成签到,获得积分10
11秒前
青木蓝完成签到,获得积分10
11秒前
11秒前
阿怪完成签到,获得积分20
12秒前
清圆527完成签到,获得积分10
12秒前
Hello应助胖鲤鱼采纳,获得10
12秒前
奔跑石小猛完成签到,获得积分10
12秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
the development of the right of privacy in new york 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180142
求助须知:如何正确求助?哪些是违规求助? 2830541
关于积分的说明 7978378
捐赠科研通 2492125
什么是DOI,文献DOI怎么找? 1329213
科研通“疑难数据库(出版商)”最低求助积分说明 635704
版权声明 602954