Decoupled dynamic spatial-temporal graph neural network for traffic forecasting

计算机科学 图形 人工神经网络 人工智能 理论计算机科学
作者
Zezhi Shao,Zhao Zhang,Wei Wei,Fei Wang,Yongjun Xu,Xin Cao,Christian S. Jensen
出处
期刊:Proceedings of the VLDB Endowment [VLDB Endowment]
卷期号:15 (11): 2733-2746 被引量:194
标识
DOI:10.14778/3551793.3551827
摘要

We all depend on mobility, and vehicular transportation affects the daily lives of most of us. Thus, the ability to forecast the state of traffic in a road network is an important functionality and a challenging task. Traffic data is often obtained from sensors deployed in a road network. Recent proposals on spatial-temporal graph neural networks have achieved great progress at modeling complex spatial-temporal correlations in traffic data, by modeling traffic data as a diffusion process. However, intuitively, traffic data encompasses two different kinds of hidden time series signals, namely the diffusion signals and inherent signals. Unfortunately, nearly all previous works coarsely consider traffic signals entirely as the outcome of the diffusion, while neglecting the inherent signals, which impacts model performance negatively. To improve modeling performance, we propose a novel Decoupled Spatial-Temporal Framework (DSTF) that separates the diffusion and inherent traffic information in a data-driven manner, which encompasses a unique estimation gate and a residual decomposition mechanism. The separated signals can be handled subsequently by the diffusion and inherent modules separately. Further, we propose an instantia-tion of DSTF, Decoupled Dynamic Spatial-Temporal Graph Neural Network (D2 STGNN), that captures spatial-temporal correlations and also features a dynamic graph learning module that targets the learning of the dynamic characteristics of traffic networks. Extensive experiments with four real-world traffic datasets demonstrate that the framework is capable of advancing the state-of-the-art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助英勇海采纳,获得10
刚刚
1秒前
lyy发布了新的文献求助10
1秒前
1秒前
小陈栗子完成签到,获得积分20
1秒前
1秒前
1秒前
猕猴桃发布了新的文献求助10
2秒前
2秒前
2秒前
Jasper应助梅菜菜采纳,获得10
3秒前
小贝发布了新的文献求助10
3秒前
天天快乐应助豆豆采纳,获得10
3秒前
4秒前
美好芳发布了新的文献求助10
4秒前
胡德完成签到 ,获得积分10
4秒前
4秒前
4秒前
慕青应助成懂事长采纳,获得30
4秒前
5秒前
Sli发布了新的文献求助10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
毛毛发布了新的文献求助10
5秒前
科目三应助无名小卒每文采纳,获得10
6秒前
徐凤年完成签到,获得积分10
6秒前
秦照荃完成签到,获得积分20
6秒前
不知道发布了新的文献求助10
6秒前
xiong0823发布了新的文献求助10
7秒前
Emma完成签到,获得积分10
7秒前
7秒前
8秒前
feiyuzhang完成签到,获得积分10
8秒前
QingS应助笑忘书。采纳,获得10
8秒前
jake完成签到,获得积分10
8秒前
可爱的函函应助科研痛采纳,获得10
8秒前
积极的Cindy完成签到,获得积分10
9秒前
Ttsn发布了新的文献求助10
9秒前
乐乐应助幸福的道天采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776553
求助须知:如何正确求助?哪些是违规求助? 5629807
关于积分的说明 15443193
捐赠科研通 4908648
什么是DOI,文献DOI怎么找? 2641367
邀请新用户注册赠送积分活动 1589320
关于科研通互助平台的介绍 1543933