Decoupled dynamic spatial-temporal graph neural network for traffic forecasting

计算机科学 图形 空间分析 人工神经网络 时态数据库 过程(计算) 数据挖掘 人工智能 理论计算机科学 地理 遥感 操作系统
作者
Zezhi Shao,Zhao Zhang,Wei Wei,Fei Wang,Yongjun Xu,Xin Cao,Christian S. Jensen
出处
期刊:Proceedings of the VLDB Endowment [Association for Computing Machinery]
卷期号:15 (11): 2733-2746 被引量:125
标识
DOI:10.14778/3551793.3551827
摘要

We all depend on mobility, and vehicular transportation affects the daily lives of most of us. Thus, the ability to forecast the state of traffic in a road network is an important functionality and a challenging task. Traffic data is often obtained from sensors deployed in a road network. Recent proposals on spatial-temporal graph neural networks have achieved great progress at modeling complex spatial-temporal correlations in traffic data, by modeling traffic data as a diffusion process. However, intuitively, traffic data encompasses two different kinds of hidden time series signals, namely the diffusion signals and inherent signals. Unfortunately, nearly all previous works coarsely consider traffic signals entirely as the outcome of the diffusion, while neglecting the inherent signals, which impacts model performance negatively. To improve modeling performance, we propose a novel Decoupled Spatial-Temporal Framework (DSTF) that separates the diffusion and inherent traffic information in a data-driven manner, which encompasses a unique estimation gate and a residual decomposition mechanism. The separated signals can be handled subsequently by the diffusion and inherent modules separately. Further, we propose an instantiation of DSTF, Decoupled Dynamic Spatial-Temporal Graph Neural Network (D 2 STGNN), that captures spatial-temporal correlations and also features a dynamic graph learning module that targets the learning of the dynamic characteristics of traffic networks. Extensive experiments with four real-world traffic datasets demonstrate that the framework is capable of advancing the state-of-the-art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ambrose37完成签到 ,获得积分10
1秒前
Shuo完成签到,获得积分10
1秒前
4秒前
6秒前
kc135完成签到,获得积分10
8秒前
Lee发布了新的文献求助30
8秒前
orixero应助科研通管家采纳,获得30
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
11秒前
大个应助科研通管家采纳,获得10
11秒前
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
11秒前
小二郎应助科研通管家采纳,获得10
11秒前
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
情怀应助科研通管家采纳,获得30
12秒前
Owen应助科研通管家采纳,获得10
12秒前
Akim应助科研通管家采纳,获得30
12秒前
12秒前
12秒前
浅辰完成签到 ,获得积分10
12秒前
康达发布了新的文献求助10
12秒前
可爱小铭完成签到,获得积分10
12秒前
CAOHOU应助liuzengzhang666采纳,获得10
14秒前
XZZ完成签到 ,获得积分10
15秒前
务实雁梅完成签到,获得积分10
17秒前
于归故城完成签到,获得积分10
20秒前
成就映秋完成签到,获得积分10
21秒前
23秒前
HM完成签到,获得积分10
23秒前
mawenyu完成签到,获得积分10
25秒前
Yang22完成签到,获得积分10
27秒前
wqc2060完成签到,获得积分10
27秒前
27秒前
隐形曼青应助可靠的若采纳,获得10
27秒前
拓跋傲薇完成签到,获得积分10
28秒前
zhang关注了科研通微信公众号
28秒前
29秒前
岳努力岳幸运完成签到 ,获得积分10
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965786
求助须知:如何正确求助?哪些是违规求助? 3511078
关于积分的说明 11156200
捐赠科研通 3245691
什么是DOI,文献DOI怎么找? 1793100
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804268