Decoupled dynamic spatial-temporal graph neural network for traffic forecasting

计算机科学 图形 空间分析 人工神经网络 时态数据库 过程(计算) 数据挖掘 人工智能 理论计算机科学 地理 遥感 操作系统
作者
Zezhi Shao,Zhao Zhang,Wei Wei,Fei Wang,Yongjun Xu,Xin Cao,Christian S. Jensen
出处
期刊:Proceedings of the VLDB Endowment [VLDB Endowment]
卷期号:15 (11): 2733-2746 被引量:125
标识
DOI:10.14778/3551793.3551827
摘要

We all depend on mobility, and vehicular transportation affects the daily lives of most of us. Thus, the ability to forecast the state of traffic in a road network is an important functionality and a challenging task. Traffic data is often obtained from sensors deployed in a road network. Recent proposals on spatial-temporal graph neural networks have achieved great progress at modeling complex spatial-temporal correlations in traffic data, by modeling traffic data as a diffusion process. However, intuitively, traffic data encompasses two different kinds of hidden time series signals, namely the diffusion signals and inherent signals. Unfortunately, nearly all previous works coarsely consider traffic signals entirely as the outcome of the diffusion, while neglecting the inherent signals, which impacts model performance negatively. To improve modeling performance, we propose a novel Decoupled Spatial-Temporal Framework (DSTF) that separates the diffusion and inherent traffic information in a data-driven manner, which encompasses a unique estimation gate and a residual decomposition mechanism. The separated signals can be handled subsequently by the diffusion and inherent modules separately. Further, we propose an instantiation of DSTF, Decoupled Dynamic Spatial-Temporal Graph Neural Network (D 2 STGNN), that captures spatial-temporal correlations and also features a dynamic graph learning module that targets the learning of the dynamic characteristics of traffic networks. Extensive experiments with four real-world traffic datasets demonstrate that the framework is capable of advancing the state-of-the-art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
特兰克斯发布了新的文献求助10
2秒前
危机的尔蝶完成签到,获得积分10
2秒前
mcsmdxs发布了新的文献求助10
3秒前
ccalvintan发布了新的文献求助10
3秒前
4秒前
4秒前
头发乱了发布了新的文献求助10
5秒前
天天快乐应助DrYang采纳,获得10
5秒前
含糊发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
完美世界应助幸福胡萝卜采纳,获得10
7秒前
通~发布了新的文献求助10
7秒前
8秒前
科目三应助Arnold采纳,获得10
8秒前
润润轩轩发布了新的文献求助10
9秒前
宗笑晴发布了新的文献求助10
9秒前
lucky完成签到,获得积分10
9秒前
糖糖发布了新的文献求助10
10秒前
10秒前
跳跃尔容完成签到,获得积分10
11秒前
wyblobin完成签到,获得积分10
11秒前
11秒前
12秒前
沉默沛岚完成签到,获得积分10
12秒前
丰知然应助宇文宛菡采纳,获得10
12秒前
所所应助tu采纳,获得30
13秒前
mechefy完成签到,获得积分10
13秒前
鲤鱼萧完成签到,获得积分10
14秒前
宗笑晴完成签到,获得积分10
14秒前
15秒前
小蘑菇应助头发乱了采纳,获得10
15秒前
代萌萌发布了新的文献求助10
16秒前
jucy发布了新的文献求助50
16秒前
16秒前
Lz完成签到,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762