Decoupled dynamic spatial-temporal graph neural network for traffic forecasting

计算机科学 图形 人工神经网络 人工智能 理论计算机科学
作者
Zezhi Shao,Zhao Zhang,Wei Wei,Fei Wang,Yongjun Xu,Xin Cao,Christian S. Jensen
出处
期刊:Proceedings of the VLDB Endowment [VLDB Endowment]
卷期号:15 (11): 2733-2746 被引量:194
标识
DOI:10.14778/3551793.3551827
摘要

We all depend on mobility, and vehicular transportation affects the daily lives of most of us. Thus, the ability to forecast the state of traffic in a road network is an important functionality and a challenging task. Traffic data is often obtained from sensors deployed in a road network. Recent proposals on spatial-temporal graph neural networks have achieved great progress at modeling complex spatial-temporal correlations in traffic data, by modeling traffic data as a diffusion process. However, intuitively, traffic data encompasses two different kinds of hidden time series signals, namely the diffusion signals and inherent signals. Unfortunately, nearly all previous works coarsely consider traffic signals entirely as the outcome of the diffusion, while neglecting the inherent signals, which impacts model performance negatively. To improve modeling performance, we propose a novel Decoupled Spatial-Temporal Framework (DSTF) that separates the diffusion and inherent traffic information in a data-driven manner, which encompasses a unique estimation gate and a residual decomposition mechanism. The separated signals can be handled subsequently by the diffusion and inherent modules separately. Further, we propose an instantia-tion of DSTF, Decoupled Dynamic Spatial-Temporal Graph Neural Network (D2 STGNN), that captures spatial-temporal correlations and also features a dynamic graph learning module that targets the learning of the dynamic characteristics of traffic networks. Extensive experiments with four real-world traffic datasets demonstrate that the framework is capable of advancing the state-of-the-art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
星月应助仲谋采纳,获得10
刚刚
PhD完成签到,获得积分10
刚刚
科研通AI6应助虚心千凡采纳,获得10
刚刚
1秒前
when完成签到 ,获得积分10
1秒前
1秒前
2秒前
dgz完成签到,获得积分10
2秒前
雅雅完成签到 ,获得积分10
3秒前
小二郎应助湿地小怪兽采纳,获得10
3秒前
3秒前
ding应助自由寻冬采纳,获得10
3秒前
4秒前
4秒前
Yu发布了新的文献求助10
4秒前
6秒前
鳗鱼鞋垫发布了新的文献求助10
6秒前
儒雅晓霜完成签到,获得积分10
6秒前
7秒前
8秒前
时尚觅松发布了新的文献求助10
8秒前
zzz完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
112450195完成签到,获得积分10
9秒前
低调小狗发布了新的文献求助10
9秒前
as_eichi完成签到,获得积分10
10秒前
充电宝应助小池采纳,获得10
10秒前
ding应助贰什柒采纳,获得10
10秒前
要减肥的鹤完成签到,获得积分10
10秒前
小蘑菇应助li采纳,获得10
11秒前
11秒前
12秒前
kkk完成签到,获得积分10
12秒前
12秒前
12秒前
李子完成签到,获得积分10
13秒前
13秒前
善学以致用应助早日毕业采纳,获得10
13秒前
小耳朵完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653573
求助须知:如何正确求助?哪些是违规求助? 4790162
关于积分的说明 15064753
捐赠科研通 4812180
什么是DOI,文献DOI怎么找? 2574341
邀请新用户注册赠送积分活动 1529955
关于科研通互助平台的介绍 1488680