Disentangled Representation for Cross-Domain Medical Image Segmentation

人工智能 分割 计算机科学 稳健性(进化) 计算机视觉 图像分割 模式识别(心理学) 尺度空间分割 Sørensen–骰子系数 掷骰子 医学影像学 基于分割的对象分类 特征提取 数学 生物化学 基因 几何学 化学
作者
Jie Wang,Chaoliang Zhong,Cheng Feng,Ying Zhang,Jun Sun,Yasuto Yokota
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:2
标识
DOI:10.1109/tim.2022.3221131
摘要

Image segmentation is a long-standing problem in medical image analysis to facilitate the clinical diagnosis and intervention. Progress has been made owing to deep learning via supervised training with elaborate human labelling, however, the segmentation models trained by the labeled source domain cannot perform well in the target domain, making existing approaches lack robustness and generalization ability. Considering the acquisition of medical image labels is quite expensive and time-consuming, we propose a novel feature disentanglement-based unsupervised domain adaptation (UDA) method to improve the robustness of the trained model in the target domain. A segmentation network is designed to learn disentangled features with two parts: I. content-related features, which are responsible for the segmentation task and invariant across domains; II. style-related features, which elucidate the discrepancy between different domains. Feature disentanglement (FD) is achieved by multi-task learning and image translation. Meanwhile, knowledge distillation is introduced to improve the performance on fine-grained segmentations. And for objects with regular shape, we incorporate the adversarial training to predict shape-invariant segmentation masks across domains. Comprehensive experiments are conducted on retina vessel segmentation and sinus surgical instrument segmentation to validate the effectiveness of the proposed method. The average Dice of twenty regular transfer directions achieves 79.26% on five public benchmarks of retina vessel segmentation, the average Dice of two transfer directions from regular to UWF attains 72.63%, and the Dice from cadaveric images to live images reaches 68.1% on sinus surgical instrument segmentation. The results demonstrate that the proposed method achieves the state-of-the-art segmentation performance in the UDA setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KevinT完成签到,获得积分10
1秒前
1秒前
2秒前
5秒前
wait发布了新的文献求助10
5秒前
沉潜完成签到,获得积分10
5秒前
斯文败类应助小灰灰采纳,获得10
5秒前
Akim应助会笑的光采纳,获得10
5秒前
5秒前
研友_LwbeX8完成签到,获得积分10
6秒前
完美世界应助张wx_100采纳,获得10
6秒前
6秒前
木子完成签到,获得积分10
6秒前
lihuahui发布了新的文献求助10
7秒前
7秒前
Karen331完成签到,获得积分10
8秒前
8秒前
小马甲应助调皮的西装采纳,获得10
8秒前
9秒前
9秒前
研友_LwbeX8发布了新的文献求助10
9秒前
9秒前
共享精神应助smin采纳,获得10
9秒前
认真的火发布了新的文献求助10
9秒前
大个应助学习中勿扰采纳,获得10
9秒前
czh应助178181采纳,获得10
10秒前
嘻嘻发布了新的文献求助10
10秒前
10秒前
10秒前
柠檬香关注了科研通微信公众号
11秒前
12秒前
知名不具发布了新的文献求助10
12秒前
13秒前
优秀星星发布了新的文献求助10
13秒前
英姑应助xiaobai采纳,获得10
13秒前
华仔应助lihuahui采纳,获得10
13秒前
WFLLL发布了新的文献求助10
14秒前
妮妮发布了新的文献求助20
14秒前
执着的小刺猬完成签到,获得积分10
14秒前
meng发布了新的文献求助10
14秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979392
求助须知:如何正确求助?哪些是违规求助? 3523308
关于积分的说明 11217159
捐赠科研通 3260797
什么是DOI,文献DOI怎么找? 1800211
邀请新用户注册赠送积分活动 878960
科研通“疑难数据库(出版商)”最低求助积分说明 807113