Disentangled Representation for Cross-Domain Medical Image Segmentation

人工智能 分割 计算机科学 稳健性(进化) 计算机视觉 图像分割 模式识别(心理学) 尺度空间分割 Sørensen–骰子系数 掷骰子 医学影像学 基于分割的对象分类 特征提取 数学 生物化学 基因 几何学 化学
作者
Jie Wang,Chaoliang Zhong,Cheng Feng,Ying Zhang,Jun Sun,Yasuto Yokota
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:19
标识
DOI:10.1109/tim.2022.3221131
摘要

Image segmentation is a long-standing problem in medical image analysis to facilitate the clinical diagnosis and intervention. Progress has been made owing to deep learning via supervised training with elaborate human labelling, however, the segmentation models trained by the labeled source domain cannot perform well in the target domain, making existing approaches lack robustness and generalization ability. Considering the acquisition of medical image labels is quite expensive and time-consuming, we propose a novel feature disentanglement-based unsupervised domain adaptation (UDA) method to improve the robustness of the trained model in the target domain. A segmentation network is designed to learn disentangled features with two parts: I. content-related features, which are responsible for the segmentation task and invariant across domains; II. style-related features, which elucidate the discrepancy between different domains. Feature disentanglement (FD) is achieved by multi-task learning and image translation. Meanwhile, knowledge distillation is introduced to improve the performance on fine-grained segmentations. And for objects with regular shape, we incorporate the adversarial training to predict shape-invariant segmentation masks across domains. Comprehensive experiments are conducted on retina vessel segmentation and sinus surgical instrument segmentation to validate the effectiveness of the proposed method. The average Dice of twenty regular transfer directions achieves 79.26% on five public benchmarks of retina vessel segmentation, the average Dice of two transfer directions from regular to UWF attains 72.63%, and the Dice from cadaveric images to live images reaches 68.1% on sinus surgical instrument segmentation. The results demonstrate that the proposed method achieves the state-of-the-art segmentation performance in the UDA setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aktuell发布了新的文献求助20
1秒前
英勇代荷完成签到,获得积分10
2秒前
zheng完成签到 ,获得积分10
5秒前
5秒前
用户5063899完成签到,获得积分10
6秒前
Yuuki完成签到,获得积分10
6秒前
路远完成签到,获得积分20
8秒前
安全123发布了新的文献求助30
9秒前
10秒前
路远发布了新的文献求助10
11秒前
欢呼问旋完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
16秒前
写论文的狗完成签到,获得积分10
16秒前
wushuang完成签到 ,获得积分10
17秒前
小铃铛发布了新的文献求助10
17秒前
无极微光应助阳炎采纳,获得20
17秒前
之之完成签到,获得积分10
17秒前
多看论文多读书关注了科研通微信公众号
18秒前
19秒前
19秒前
20秒前
Kk完成签到,获得积分10
20秒前
落寞傲南完成签到,获得积分10
20秒前
wanci应助曲书文采纳,获得10
21秒前
英俊的尔容完成签到 ,获得积分10
21秒前
高级牛马完成签到 ,获得积分10
22秒前
23秒前
23秒前
FashionBoy应助Viyo采纳,获得10
23秒前
赵晨雪完成签到 ,获得积分10
23秒前
安全123完成签到,获得积分10
23秒前
23秒前
量子星尘发布了新的文献求助10
24秒前
coco完成签到,获得积分10
25秒前
美满的鲂发布了新的文献求助10
26秒前
27秒前
小章呀发布了新的文献求助10
27秒前
Hello应助安全123采纳,获得10
27秒前
CQ发布了新的文献求助10
28秒前
Mado发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789740
求助须知:如何正确求助?哪些是违规求助? 5722835
关于积分的说明 15475357
捐赠科研通 4917509
什么是DOI,文献DOI怎么找? 2647048
邀请新用户注册赠送积分活动 1594699
关于科研通互助平台的介绍 1549180