Disentangled Representation for Cross-Domain Medical Image Segmentation

人工智能 分割 计算机科学 稳健性(进化) 计算机视觉 图像分割 模式识别(心理学) 尺度空间分割 Sørensen–骰子系数 掷骰子 医学影像学 基于分割的对象分类 特征提取 数学 生物化学 基因 几何学 化学
作者
Jie Wang,Chaoliang Zhong,Cheng Feng,Ying Zhang,Jun Sun,Yasuto Yokota
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:2
标识
DOI:10.1109/tim.2022.3221131
摘要

Image segmentation is a long-standing problem in medical image analysis to facilitate the clinical diagnosis and intervention. Progress has been made owing to deep learning via supervised training with elaborate human labelling, however, the segmentation models trained by the labeled source domain cannot perform well in the target domain, making existing approaches lack robustness and generalization ability. Considering the acquisition of medical image labels is quite expensive and time-consuming, we propose a novel feature disentanglement-based unsupervised domain adaptation (UDA) method to improve the robustness of the trained model in the target domain. A segmentation network is designed to learn disentangled features with two parts: I. content-related features, which are responsible for the segmentation task and invariant across domains; II. style-related features, which elucidate the discrepancy between different domains. Feature disentanglement (FD) is achieved by multi-task learning and image translation. Meanwhile, knowledge distillation is introduced to improve the performance on fine-grained segmentations. And for objects with regular shape, we incorporate the adversarial training to predict shape-invariant segmentation masks across domains. Comprehensive experiments are conducted on retina vessel segmentation and sinus surgical instrument segmentation to validate the effectiveness of the proposed method. The average Dice of twenty regular transfer directions achieves 79.26% on five public benchmarks of retina vessel segmentation, the average Dice of two transfer directions from regular to UWF attains 72.63%, and the Dice from cadaveric images to live images reaches 68.1% on sinus surgical instrument segmentation. The results demonstrate that the proposed method achieves the state-of-the-art segmentation performance in the UDA setting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Zx_1993应助予秋采纳,获得10
3秒前
李爱国应助健康的雁风采纳,获得10
3秒前
七米日光发布了新的文献求助10
3秒前
丘比特应助困困包采纳,获得10
4秒前
yzh1129发布了新的文献求助30
5秒前
DUDUDUDU发布了新的文献求助10
6秒前
7秒前
8秒前
科研通AI2S应助Dai采纳,获得10
8秒前
波波鱼完成签到,获得积分10
8秒前
言目木发布了新的文献求助10
9秒前
William_l_c发布了新的文献求助10
12秒前
sc发布了新的文献求助10
12秒前
15秒前
九载发布了新的文献求助10
15秒前
纯真的醉柳完成签到,获得积分10
16秒前
16秒前
甜甜的又蓝完成签到,获得积分10
16秒前
所所应助舒心的初露采纳,获得10
16秒前
16秒前
zyy144728发布了新的文献求助10
17秒前
科目三应助eno1009采纳,获得20
17秒前
米米发布了新的文献求助10
17秒前
bb发布了新的文献求助10
19秒前
19秒前
wuge5857完成签到,获得积分10
19秒前
shhoing应助科研蝗虫采纳,获得10
19秒前
Dai发布了新的文献求助10
20秒前
20秒前
热情的安彤完成签到,获得积分10
21秒前
研友_VZG7GZ应助Xjx6519采纳,获得10
26秒前
Stella应助隐形的凡阳采纳,获得10
27秒前
bkagyin应助Lily采纳,获得10
27秒前
言目木完成签到,获得积分10
27秒前
shhoing应助woody采纳,获得10
28秒前
wuge5857发布了新的文献求助10
29秒前
忍冬完成签到 ,获得积分10
31秒前
你好完成签到,获得积分10
31秒前
科研蝗虫完成签到,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557486
求助须知:如何正确求助?哪些是违规求助? 4642578
关于积分的说明 14668531
捐赠科研通 4583986
什么是DOI,文献DOI怎么找? 2514487
邀请新用户注册赠送积分活动 1488830
关于科研通互助平台的介绍 1459454