Disentangled Representation for Cross-Domain Medical Image Segmentation

人工智能 分割 计算机科学 稳健性(进化) 计算机视觉 图像分割 模式识别(心理学) 尺度空间分割 Sørensen–骰子系数 掷骰子 医学影像学 基于分割的对象分类 特征提取 数学 生物化学 基因 几何学 化学
作者
Jie Wang,Chaoliang Zhong,Cheng Feng,Ying Zhang,Jun Sun,Yasuto Yokota
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:19
标识
DOI:10.1109/tim.2022.3221131
摘要

Image segmentation is a long-standing problem in medical image analysis to facilitate the clinical diagnosis and intervention. Progress has been made owing to deep learning via supervised training with elaborate human labelling, however, the segmentation models trained by the labeled source domain cannot perform well in the target domain, making existing approaches lack robustness and generalization ability. Considering the acquisition of medical image labels is quite expensive and time-consuming, we propose a novel feature disentanglement-based unsupervised domain adaptation (UDA) method to improve the robustness of the trained model in the target domain. A segmentation network is designed to learn disentangled features with two parts: I. content-related features, which are responsible for the segmentation task and invariant across domains; II. style-related features, which elucidate the discrepancy between different domains. Feature disentanglement (FD) is achieved by multi-task learning and image translation. Meanwhile, knowledge distillation is introduced to improve the performance on fine-grained segmentations. And for objects with regular shape, we incorporate the adversarial training to predict shape-invariant segmentation masks across domains. Comprehensive experiments are conducted on retina vessel segmentation and sinus surgical instrument segmentation to validate the effectiveness of the proposed method. The average Dice of twenty regular transfer directions achieves 79.26% on five public benchmarks of retina vessel segmentation, the average Dice of two transfer directions from regular to UWF attains 72.63%, and the Dice from cadaveric images to live images reaches 68.1% on sinus surgical instrument segmentation. The results demonstrate that the proposed method achieves the state-of-the-art segmentation performance in the UDA setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
2秒前
3秒前
3秒前
4秒前
4秒前
4秒前
wkyt完成签到 ,获得积分10
4秒前
核桃发布了新的文献求助10
4秒前
5秒前
酷波er应助xiaokezhang采纳,获得10
5秒前
科研小能手完成签到,获得积分10
6秒前
6秒前
武武发布了新的文献求助10
6秒前
Owen应助lulufighting采纳,获得10
7秒前
上官若男应助肖鹏采纳,获得10
7秒前
丘比特应助谨慎的凝丝采纳,获得10
7秒前
Party发布了新的文献求助10
8秒前
9秒前
赘婿应助平常天宇采纳,获得30
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
苗条念云发布了新的文献求助10
10秒前
11秒前
七yy发布了新的文献求助10
12秒前
双硫仑完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
Gates发布了新的文献求助10
15秒前
16秒前
荷塘月色应助xuzekun采纳,获得10
16秒前
16秒前
武勇发布了新的文献求助10
16秒前
17秒前
17秒前
Chase发布了新的文献求助10
17秒前
18秒前
18秒前
peng完成签到,获得积分10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728831
求助须知:如何正确求助?哪些是违规求助? 5314940
关于积分的说明 15315299
捐赠科研通 4875926
什么是DOI,文献DOI怎么找? 2619096
邀请新用户注册赠送积分活动 1568732
关于科研通互助平台的介绍 1525223