亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Disentangled Representation for Cross-Domain Medical Image Segmentation

人工智能 分割 计算机科学 稳健性(进化) 计算机视觉 图像分割 模式识别(心理学) 尺度空间分割 Sørensen–骰子系数 掷骰子 医学影像学 基于分割的对象分类 特征提取 数学 生物化学 基因 几何学 化学
作者
Jie Wang,Chaoliang Zhong,Cheng Feng,Ying Zhang,Jun Sun,Yasuto Yokota
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:2
标识
DOI:10.1109/tim.2022.3221131
摘要

Image segmentation is a long-standing problem in medical image analysis to facilitate the clinical diagnosis and intervention. Progress has been made owing to deep learning via supervised training with elaborate human labelling, however, the segmentation models trained by the labeled source domain cannot perform well in the target domain, making existing approaches lack robustness and generalization ability. Considering the acquisition of medical image labels is quite expensive and time-consuming, we propose a novel feature disentanglement-based unsupervised domain adaptation (UDA) method to improve the robustness of the trained model in the target domain. A segmentation network is designed to learn disentangled features with two parts: I. content-related features, which are responsible for the segmentation task and invariant across domains; II. style-related features, which elucidate the discrepancy between different domains. Feature disentanglement (FD) is achieved by multi-task learning and image translation. Meanwhile, knowledge distillation is introduced to improve the performance on fine-grained segmentations. And for objects with regular shape, we incorporate the adversarial training to predict shape-invariant segmentation masks across domains. Comprehensive experiments are conducted on retina vessel segmentation and sinus surgical instrument segmentation to validate the effectiveness of the proposed method. The average Dice of twenty regular transfer directions achieves 79.26% on five public benchmarks of retina vessel segmentation, the average Dice of two transfer directions from regular to UWF attains 72.63%, and the Dice from cadaveric images to live images reaches 68.1% on sinus surgical instrument segmentation. The results demonstrate that the proposed method achieves the state-of-the-art segmentation performance in the UDA setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助一站到底采纳,获得10
3秒前
华仔应助不想长大采纳,获得10
8秒前
9秒前
爆米花应助mmmmk采纳,获得10
13秒前
周周发布了新的文献求助10
14秒前
芳华如梦完成签到 ,获得积分10
14秒前
李健的小迷弟应助yhc采纳,获得10
16秒前
18秒前
万能图书馆应助ziyuexu采纳,获得10
20秒前
赫贞完成签到,获得积分10
22秒前
周周完成签到,获得积分10
23秒前
dxwy完成签到,获得积分10
25秒前
Bressanone完成签到,获得积分10
27秒前
听闻墨笙完成签到 ,获得积分10
27秒前
lkk183完成签到 ,获得积分10
32秒前
彭于晏应助谨慎的荠采纳,获得10
39秒前
violet兰完成签到,获得积分20
40秒前
42秒前
一薪发布了新的文献求助10
43秒前
Sophie发布了新的文献求助10
46秒前
49秒前
56秒前
安静凡旋完成签到 ,获得积分10
59秒前
爱笑稀发布了新的文献求助10
1分钟前
taotao发布了新的文献求助10
1分钟前
点一个随机昵称完成签到 ,获得积分10
1分钟前
pojian完成签到,获得积分10
1分钟前
1分钟前
无辜烧鹅发布了新的文献求助10
1分钟前
1分钟前
王某人完成签到 ,获得积分10
1分钟前
1分钟前
特特雷珀萨努完成签到 ,获得积分10
1分钟前
zoelir完成签到 ,获得积分10
1分钟前
Sunny发布了新的文献求助10
1分钟前
科研通AI2S应助无话可说采纳,获得10
1分钟前
眯眯眼的沛柔完成签到,获得积分20
1分钟前
棋1完成签到 ,获得积分10
1分钟前
无花果应助眯眯眼的沛柔采纳,获得10
1分钟前
领导范儿应助Lizzy采纳,获得10
1分钟前
高分求助中
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
Apply error vector measurements in communications design 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3346755
求助须知:如何正确求助?哪些是违规求助? 2973338
关于积分的说明 8658999
捐赠科研通 2653866
什么是DOI,文献DOI怎么找? 1453336
科研通“疑难数据库(出版商)”最低求助积分说明 672870
邀请新用户注册赠送积分活动 662808