坏死性下垂
细胞生物学
程序性细胞死亡
生物
胞浆
磷酸化
细胞凋亡
膜蛋白
上睑下垂
细胞
化学
膜
生物化学
酶
作者
Peter Vandenabeele,Geert Bultynck,Savvas N. Savvides
标识
DOI:10.1038/s41580-022-00564-w
摘要
Regulated cell death (RCD) relies on activation and recruitment of pore-forming proteins (PFPs) that function as executioners of specific cell death pathways: apoptosis regulator BAX (BAX), BCL-2 homologous antagonist/killer (BAK) and BCL-2-related ovarian killer protein (BOK) for apoptosis, gasdermins (GSDMs) for pyroptosis and mixed lineage kinase domain-like protein (MLKL) for necroptosis. Inactive precursors of PFPs are converted into pore-forming entities through activation, membrane recruitment, membrane insertion and oligomerization. These mechanisms involve protein–protein and protein–lipid interactions, proteolytic processing and phosphorylation. In this Review, we discuss the structural rearrangements incurred by RCD-related PFPs and describe the mechanisms that manifest conversion from autoinhibited to membrane-embedded molecular states. We further discuss the formation and maturation of membrane pores formed by BAX/BAK/BOK, GSDMs and MLKL, leading to diverse pore architectures. Lastly, we highlight commonalities and differences of PFP mechanisms involving BAX/BAK/BOK, GSDMs and MLKL and conclude with a discussion on how, in a population of challenged cells, the coexistence of cell death modalities may have profound physiological and pathophysiological implications. The proteins apoptosis regulator BAX (BAX), BCL-2 homologous antagonist/killer (BAK) and BCL-2-related ovarian killer protein (BOK), gasdermins and mixed lineage kinase domain-like protein (MLKL) are key executioners of regulated cell death by forming pores across the plasma or mitochondrial membrane. This Review discusses structural rearrangements during activation and oligomerization of these proteins and highlights commonalities and differences of pore formation mechanisms.
科研通智能强力驱动
Strongly Powered by AbleSci AI