R-YOLO: A Robust Object Detector in Adverse Weather

恶劣天气 稳健性(进化) 探测器 目标检测 预处理器 特征学习 计算机科学 深度学习 机器学习 模式识别(心理学) 计算机视觉 人工智能 气象学 电信 地理 生物化学 基因 化学
作者
Lucai Wang,Hongda Qin,Xuanyu Zhou,Xiao Lu,Fengting Zhang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:56
标识
DOI:10.1109/tim.2022.3229717
摘要

Learning a robust object detector in adverse weather with real-time efficiency is of great importance for the visual perception task for autonomous driving systems. In this article, we propose a framework to improve the YOLO to a robust detector, denoted as R(obust)-YOLO, without the need for annotations in adverse weather. Considering the distribution gap between the normal weather images and the adverse weather images, our framework consists of an image quasi-translation network (QTNet) and a feature calibration network (FCNet) for adapting the normal weather domain to the adverse weather domain gradually. Specifically, we use the simple yet effective QTNet for generating images that inherit the annotations in the normal weather domain and interpolate the gap between the two domains. Then, in FCNet, we propose two kinds of adversarial-learning-based feature calibration modules to effectively align the feature representations in two domains in a local-to-global manner. With such a learning framework, our R-YOLO does not change the original YOLO structure, and thus it is applicable to all the YOLO-series detectors. Extensive experimental results of our R-YOLOv3, R-YOLOv5, and R-YOLOX on both the hazy and rainy datasets show that our method outperforms other detectors with dehaze/derain as the preprocessing step and other unsupervised domain adaptation (UDA)-based detectors, which confirms the effectiveness of our method on improving the robustness by only leveraging the unlabeled adverse weather images. Our code and pretrained models are available at: https://github.com/qinhongda8/R-YOLO .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助说句话采纳,获得10
刚刚
奕苼完成签到 ,获得积分10
1秒前
完美世界应助yy采纳,获得10
1秒前
小小完成签到,获得积分10
1秒前
murmure发布了新的文献求助10
3秒前
3秒前
Ftucyctucutct完成签到,获得积分10
3秒前
Lucas应助金阿林在科研采纳,获得10
3秒前
3秒前
4秒前
5秒前
无期发布了新的文献求助10
5秒前
科研通AI6应助热爱采纳,获得10
5秒前
彭于彦祖应助苗儿采纳,获得30
5秒前
李健的小迷弟应助afterly采纳,获得10
6秒前
6秒前
6秒前
7秒前
张子烜完成签到,获得积分10
7秒前
JamesPei应助云深不知处采纳,获得10
7秒前
浮游应助康K采纳,获得10
7秒前
freya发布了新的文献求助30
8秒前
臭小子发布了新的文献求助10
8秒前
打打应助我爱学习采纳,获得10
8秒前
8秒前
9秒前
FashionBoy应助excellent采纳,获得10
9秒前
lxm完成签到,获得积分20
9秒前
ACE发布了新的文献求助10
9秒前
10秒前
LIUDEHUA发布了新的文献求助10
10秒前
希望天下0贩的0应助zuolan采纳,获得10
10秒前
保奔发布了新的文献求助30
11秒前
11秒前
11秒前
Hibiscus95完成签到,获得积分10
11秒前
11秒前
CodeCraft应助instant采纳,获得10
11秒前
Mayday完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5435065
求助须知:如何正确求助?哪些是违规求助? 4547267
关于积分的说明 14207311
捐赠科研通 4467347
什么是DOI,文献DOI怎么找? 2448520
邀请新用户注册赠送积分活动 1439497
关于科研通互助平台的介绍 1416178