亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

R-YOLO: A Robust Object Detector in Adverse Weather

恶劣天气 稳健性(进化) 探测器 目标检测 预处理器 特征学习 计算机科学 深度学习 机器学习 模式识别(心理学) 计算机视觉 人工智能 气象学 电信 地理 生物化学 基因 化学
作者
Lucai Wang,Hongda Qin,Xuanyu Zhou,Xiao Lu,Fengting Zhang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:56
标识
DOI:10.1109/tim.2022.3229717
摘要

Learning a robust object detector in adverse weather with real-time efficiency is of great importance for the visual perception task for autonomous driving systems. In this article, we propose a framework to improve the YOLO to a robust detector, denoted as R(obust)-YOLO, without the need for annotations in adverse weather. Considering the distribution gap between the normal weather images and the adverse weather images, our framework consists of an image quasi-translation network (QTNet) and a feature calibration network (FCNet) for adapting the normal weather domain to the adverse weather domain gradually. Specifically, we use the simple yet effective QTNet for generating images that inherit the annotations in the normal weather domain and interpolate the gap between the two domains. Then, in FCNet, we propose two kinds of adversarial-learning-based feature calibration modules to effectively align the feature representations in two domains in a local-to-global manner. With such a learning framework, our R-YOLO does not change the original YOLO structure, and thus it is applicable to all the YOLO-series detectors. Extensive experimental results of our R-YOLOv3, R-YOLOv5, and R-YOLOX on both the hazy and rainy datasets show that our method outperforms other detectors with dehaze/derain as the preprocessing step and other unsupervised domain adaptation (UDA)-based detectors, which confirms the effectiveness of our method on improving the robustness by only leveraging the unlabeled adverse weather images. Our code and pretrained models are available at: https://github.com/qinhongda8/R-YOLO .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
fuyaoye2010完成签到,获得积分10
8秒前
fuyaoye2010发布了新的文献求助10
11秒前
wanci应助茶叶派采纳,获得10
13秒前
14秒前
lhr发布了新的文献求助10
17秒前
17秒前
19秒前
24秒前
anna完成签到 ,获得积分10
25秒前
30秒前
迅速初柳发布了新的文献求助10
31秒前
34秒前
Lyhz发布了新的文献求助10
35秒前
充电宝应助迅速初柳采纳,获得10
39秒前
44秒前
49秒前
1分钟前
哈哈哈哈发布了新的文献求助10
1分钟前
LYL完成签到,获得积分10
1分钟前
1分钟前
动听隶发布了新的文献求助10
1分钟前
哈哈哈哈完成签到,获得积分10
1分钟前
1分钟前
酷波er应助aabb采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得30
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
Alice完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
Ahui完成签到 ,获得积分10
2分钟前
什么完成签到,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746703
求助须知:如何正确求助?哪些是违规求助? 5438025
关于积分的说明 15355789
捐赠科研通 4886737
什么是DOI,文献DOI怎么找? 2627400
邀请新用户注册赠送积分活动 1575879
关于科研通互助平台的介绍 1532607