R-YOLO: A Robust Object Detector in Adverse Weather

恶劣天气 稳健性(进化) 探测器 目标检测 预处理器 特征学习 计算机科学 深度学习 机器学习 模式识别(心理学) 计算机视觉 人工智能 气象学 电信 地理 生物化学 基因 化学
作者
Lucai Wang,Hongda Qin,Xuanyu Zhou,Xiao Lu,Fengting Zhang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:21
标识
DOI:10.1109/tim.2022.3229717
摘要

Learning a robust object detector in adverse weather with real-time efficiency is of great importance for the visual perception task for autonomous driving systems. In this article, we propose a framework to improve the YOLO to a robust detector, denoted as R(obust)-YOLO, without the need for annotations in adverse weather. Considering the distribution gap between the normal weather images and the adverse weather images, our framework consists of an image quasi-translation network (QTNet) and a feature calibration network (FCNet) for adapting the normal weather domain to the adverse weather domain gradually. Specifically, we use the simple yet effective QTNet for generating images that inherit the annotations in the normal weather domain and interpolate the gap between the two domains. Then, in FCNet, we propose two kinds of adversarial-learning-based feature calibration modules to effectively align the feature representations in two domains in a local-to-global manner. With such a learning framework, our R-YOLO does not change the original YOLO structure, and thus it is applicable to all the YOLO-series detectors. Extensive experimental results of our R-YOLOv3, R-YOLOv5, and R-YOLOX on both the hazy and rainy datasets show that our method outperforms other detectors with dehaze/derain as the preprocessing step and other unsupervised domain adaptation (UDA)-based detectors, which confirms the effectiveness of our method on improving the robustness by only leveraging the unlabeled adverse weather images. Our code and pretrained models are available at: https://github.com/qinhongda8/R-YOLO .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
songsong完成签到,获得积分10
1秒前
1秒前
pearl关注了科研通微信公众号
1秒前
琴生完成签到,获得积分10
2秒前
2秒前
2秒前
Mtoc完成签到 ,获得积分10
2秒前
2秒前
跳跃老五完成签到 ,获得积分10
2秒前
2秒前
浪迹天涯完成签到,获得积分10
3秒前
包容的剑发布了新的文献求助10
3秒前
斯文的茹嫣完成签到,获得积分10
3秒前
义气笑容完成签到,获得积分10
3秒前
yufeng完成签到 ,获得积分10
4秒前
4秒前
Jenny完成签到,获得积分10
4秒前
4秒前
科研小小小白完成签到,获得积分10
5秒前
5秒前
小橙子完成签到 ,获得积分10
6秒前
7秒前
7秒前
福娃发布了新的文献求助10
7秒前
8秒前
达斯维完成签到,获得积分10
8秒前
浪迹天涯发布了新的文献求助10
8秒前
今后应助杜嘟嘟采纳,获得30
8秒前
9秒前
9秒前
清圆527完成签到,获得积分10
9秒前
JamesPei应助Zhong采纳,获得10
9秒前
10秒前
10秒前
11秒前
11秒前
11秒前
Emma完成签到 ,获得积分10
12秒前
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740