Language models generalize beyond natural proteins

蛋白质设计 生成语法 序列(生物学) 自然语言 计算机科学 蛋白质二级结构 蛋白质结构 记忆 生成模型 人工智能 计算生物学 生物 数学 生物化学 数学教育
作者
Robert Verkuil,Ori Kabeli,Yilun Du,Basile I. M. Wicky,Lukas F. Milles,Justas Dauparas,David Baker,Sergey Ovchinnikov,Tom Sercu,Alexander Rives
标识
DOI:10.1101/2022.12.21.521521
摘要

Abstract Learning the design patterns of proteins from sequences across evolution may have promise toward generative protein design. However it is unknown whether language models, trained on sequences of natural proteins, will be capable of more than memorization of existing protein families. Here we show that language models generalize beyond natural proteins to generate de novo proteins. We focus on two protein design tasks: fixed backbone design where the structure is specified, and unconstrained generation where the structure is sampled from the model. Remarkably although the models are trained only on sequences, we find that they are capable of designing structure. A total of 228 generated proteins are evaluated experimentally with high overall success rates (152/228 or 67%) in producing a soluble and monomeric species by size exclusion chromatography. Out of 152 experimentally successful designs, 35 have no significant sequence match to known natural proteins. Of the remaining 117, sequence identity to the nearest sequence match is at median 27%, below 20% for 6 designs, and as low as 18% for 3 designs. For fixed backbone design, the language model generates successful designs for each of eight experimentally evaluated artificially created fixed backbone targets. For unconstrained generation, sampled proteins cover diverse topologies and secondary structure compositions, and have high experimental success rate (71/129 or 55%). The designs reflect deep patterns linking sequence and structure, including motifs that occur in related natural structures, and motifs that are not observed in similar structural contexts in known protein families. The results show that language models, though only trained on sequences, learn a deep grammar that enables the design of protein structure, extending beyond natural proteins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
缓慢夜阑发布了新的文献求助10
1秒前
1秒前
Rabbit完成签到 ,获得积分10
1秒前
1秒前
辛苦打工人完成签到,获得积分10
2秒前
amwlsai完成签到,获得积分10
2秒前
2秒前
深情安青应助霸气的惜寒采纳,获得10
2秒前
呆萌凤完成签到 ,获得积分10
3秒前
3秒前
所所应助欣喜柚子采纳,获得10
3秒前
NexusExplorer应助南海神尼采纳,获得10
3秒前
等等完成签到,获得积分10
4秒前
Lunjiang发布了新的文献求助10
4秒前
katrina完成签到 ,获得积分10
4秒前
5秒前
科研通AI5应助向天歌采纳,获得10
5秒前
5秒前
6秒前
6秒前
hzhang0807发布了新的文献求助10
6秒前
科研通AI5应助prokechery采纳,获得10
7秒前
7秒前
茶馆发布了新的文献求助10
7秒前
Miianlli完成签到 ,获得积分10
8秒前
8秒前
9秒前
顾矜应助叁叁采纳,获得10
9秒前
9秒前
gott发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
11秒前
实验耗材完成签到 ,获得积分10
11秒前
罗拉发布了新的文献求助10
11秒前
细腻的秋天完成签到 ,获得积分10
11秒前
Sunshine1997完成签到,获得积分10
11秒前
小豆完成签到,获得积分10
12秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3730122
求助须知:如何正确求助?哪些是违规求助? 3274962
关于积分的说明 9989794
捐赠科研通 2990404
什么是DOI,文献DOI怎么找? 1641106
邀请新用户注册赠送积分活动 779551
科研通“疑难数据库(出版商)”最低求助积分说明 748266