亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Optimized Forecasting Model to Improve the Accuracy of Very Short-Term Wind Power Prediction

计算机科学 均方误差 时间序列 超参数 水准点(测量) 风力发电 期限(时间) 计算 噪音(视频) 希尔伯特-黄变换 白噪声 人工智能 算法 机器学习 统计 数学 工程类 物理 量子力学 电气工程 电信 大地测量学 图像(数学) 地理
作者
Md. Alamgir Hossain,Evan Gray,Junwei Lu,Md. Rabiul Islam,Md Shafiul Alam,Ripon K. Chakrabortty,H. R. Pota
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (10): 10145-10159 被引量:24
标识
DOI:10.1109/tii.2022.3230726
摘要

This article proposes a novel framework to improve the prediction accuracy of very short-term (5-min) wind power generation. The framework consists of complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), monarch butterfly optimization (MBO) and long short-term memory (LSTM), called CEMOLS. The CEEMDAN is employed to extract complex hidden features of time-series data into intrinsic mode functions that are predicted using LSTM models with dropout regularization to retain long-term relationships between input and output data, while the optimization algorithm tunes the hyperparameters of the forecasting model. Data from four real wind farms in New South Wales are collected and preprocessed to train and test the forecasting models. Recently developed rival models are compared to identify the best-performing prediction model. The analysis demonstrates that the proposed CEMOLS with low computation time can improve forecasting accuracy on average by 32.96% in mean absolute error, 47.10% in root mean square error and 32.33% in mean absolute percentage error as compared to the benchmark Persistence model. It also demonstrates that sensitive and statistical analysis needs to be carried out to determine robust prediction models among rival models for practical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Fox完成签到,获得积分10
4秒前
科研通AI2S应助魏欣娜采纳,获得10
7秒前
7秒前
维颖完成签到,获得积分10
9秒前
22秒前
26秒前
27秒前
zhvjdb发布了新的文献求助10
31秒前
Raju发布了新的文献求助100
34秒前
英姑应助lpy李采纳,获得10
34秒前
40秒前
zhvjdb完成签到,获得积分10
44秒前
Yuuw发布了新的文献求助10
45秒前
bastien驳回了xxfsx应助
45秒前
46秒前
46秒前
Huzhu应助魏欣娜采纳,获得10
53秒前
科研通AI6应助科研通管家采纳,获得10
53秒前
浮游应助科研通管家采纳,获得30
53秒前
浮游应助科研通管家采纳,获得10
53秒前
浮游应助科研通管家采纳,获得10
53秒前
华仔应助科研通管家采纳,获得10
53秒前
Yuuw完成签到,获得积分10
54秒前
57秒前
Sherry发布了新的文献求助20
1分钟前
充电宝应助青柠采纳,获得10
1分钟前
科研通AI2S应助魏欣娜采纳,获得10
1分钟前
1分钟前
1分钟前
33发布了新的文献求助10
1分钟前
1分钟前
田様应助yydcmnyxx采纳,获得30
1分钟前
1分钟前
RNATx完成签到,获得积分10
1分钟前
lpy李发布了新的文献求助10
1分钟前
lcxw1224完成签到,获得积分10
1分钟前
科目三应助Sherry采纳,获得10
1分钟前
2分钟前
2分钟前
早川发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482272
求助须知:如何正确求助?哪些是违规求助? 4583190
关于积分的说明 14388849
捐赠科研通 4512197
什么是DOI,文献DOI怎么找? 2472722
邀请新用户注册赠送积分活动 1459016
关于科研通互助平台的介绍 1432418