Ultrathin Hollow Co/N/C Spheres from Hyper‐Crosslinked Polymers by a New Universal Strategy with Boosted ORR Efficiency

电催化剂 材料科学 聚合物 单体 电极 纳米技术 杂原子 多孔性 碳纤维 化学工程 刚度(电磁) 球体 电化学 复合材料 化学 有机化学 天文 工程类 戒指(化学) 物理化学 复合数 物理
作者
Zhen Zhan,Junchen Yu,Shuqing Li,Xiaoxuan Yi,Jingyu Wang,Shaolei Wang,Bien Tan
出处
期刊:Small [Wiley]
卷期号:19 (16) 被引量:14
标识
DOI:10.1002/smll.202207646
摘要

Porous carbon materials with hollow structure, on account of the extraordinary morphology, reveal fascinating prospects in lithium-ion batteries, electrocatalysis, etc. However, collapse in ultrathin carbon spheres due to insufficient rigidity in such thin materials obstructs further enhanced capability. Based on hyper-crosslinked polymers (HCPs) with sufficient pore structure and rigid framework, a new bottom-up strategy is proposed to construct SiO2 @HCPs directly from aromatic monomers. Heteroatom and function groups can be facilely introduced to the skeleton. The thickness of HCPs' wall can be tuned from 9 to 20 nm, which is much thinner than that of hollow sphere synthesized by the traditional method, and the sample with a thickness of 20 nm shows the highest surface area of 1633 m2 g-1 . The oxygen reduction reaction is conducted and the CoNHCS electrocatalysts with an ultrathin thickness of 5 nm display higher half-wave potential than those of bulk samples, even better than commercial Pt/C electrode. On account of the hollow structure, the relative current density loss of electrocatalysts is only 4.1% in comparison with 27.7% in Pt/C electrode during the 15 000 s test, indicating an obvious higher long-term stability. The new strategy to construct hollow HCPs may shed light on efficient chemical catalysis, drug delivery, and electrocatalysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
放眼天下完成签到 ,获得积分10
刚刚
文毛完成签到,获得积分10
刚刚
刚刚
1秒前
兴奋的问旋完成签到,获得积分10
1秒前
张张完成签到,获得积分10
1秒前
陈文学完成签到,获得积分10
2秒前
一一发布了新的文献求助10
2秒前
bkagyin应助潇洒的冷玉采纳,获得10
3秒前
通~发布了新的文献求助10
3秒前
3秒前
芒果完成签到,获得积分10
3秒前
4秒前
cly3397完成签到,获得积分10
4秒前
开心发布了新的文献求助10
4秒前
4秒前
少年发布了新的文献求助10
5秒前
天天快乐应助阿毛采纳,获得10
5秒前
Jenny应助狂野的以珊采纳,获得10
5秒前
6秒前
6秒前
7秒前
8秒前
研友_LMNjkn发布了新的文献求助10
8秒前
ding应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
yizhiGao应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
wanci应助科研通管家采纳,获得10
8秒前
华仔应助科研通管家采纳,获得10
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
大模型应助科研通管家采纳,获得10
8秒前
pinging应助科研通管家采纳,获得10
9秒前
唠叨的月光完成签到,获得积分10
9秒前
大模型应助科研通管家采纳,获得10
9秒前
清爽老九应助科研通管家采纳,获得20
9秒前
科研通AI5应助科研通管家采纳,获得20
9秒前
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
清爽老九应助科研通管家采纳,获得20
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794