假电容器
材料科学
电解质
质子
电导率
电化学
电极
质子输运
超级电容器
质子导体
储能
化学工程
纳米技术
化学物理
热力学
化学
物理化学
功率(物理)
物理
量子力学
工程类
作者
Tiezhu Xu,Di Wang,Miaoran Zhang,Tengyu Yao,Zhaodi Cui,Laifa Shen
标识
DOI:10.1002/adfm.202408465
摘要
Abstract Proton‐based energy storage systems provide a more sustainable alternative for large‐scale energy storage applications. However, conventional proton batteries/pseudocapacitors suffer from severe capacity loss because of reduced ionic conductivity and water‐to‐ice conversion at ultralow temperatures. Here, anti‐freezing proton‐rich electrolytes with ultralow freezing point (below −80 °C) and high conductivity (7.89 mS cm −1 at −80 °C) are developed, combined with open framework‐structured Prussian blue analogous (VHCF) electrodes with proton‐rich binding sites, to construct a promising proton pseudocapacitor at ultralow temperatures. Hydrogen bond‐induced solvated structures and physicochemical properties are clarified by comprehensive characterization techniques and computational simulations. Temperature‐dependent structure and valence changes for VHCF electrodes at low temperatures are revealed, where the multi‐electron transfer reaction is affected by temperature to limit the capacity output. The proton pseudocapacitor (VHCF//6 m H 2 SO 4 //MoO 3‐x ) achieves excellent electrochemical performance in the temperature range from −80 to 25 °C, and delivers a voltage window of 0 to 2.8 V and a high energy density of 74.9 Wh kg −1 at −80 °C. This proton‐rich electrolyte‐electrode design principle suggests an effective strategy enabling next‐generation energy technology under extreme conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI