Automatic grid topology detection method based on Lasso algorithm and t-SNE algorithm

算法 Lasso(编程语言) 计算机科学 网格 拓扑(电路) 数学 几何学 组合数学 万维网
作者
Sheng Huang,Huakun Que,Yingnan Zhang,Ting Xie,Jie Peng
出处
期刊:Energy Informatics [Springer Nature]
卷期号:7 (1)
标识
DOI:10.1186/s42162-024-00347-x
摘要

Abstract For a long time, the low-voltage distribution network has the problems of untimely management and complex and frequently changing lines, which makes the problem of missing grid topology information increasingly serious. This study proposes an automatic grid topology detection model based on lasso algorithm and t-distributed random neighbor embedding algorithm. The model identifies the household-variable relationship through the lasso algorithm, and then identifies the grid topology of the station area through the t-distributed random neighbor embedding algorithm model. The experimental results indicated that the lasso algorithm, the constant least squares algorithm and the ridge regression algorithm had accuracies of 0.88, 0.80, and 0.71 and loss function values of 0.14, 0.20, and 0.25 for dataset sizes up to 500. Comparing the time spent on identifying household changes in different regions, in Region 1, the training time for the Lasso algorithm, the Constant Least Squares algorithm, and the Ridge Regression algorithm is 2.8 s, 3.0 s, and 3.1 s, respectively. The training time in region 2 is 2.4s, 3.6s, and 3.4s, respectively. The training time in region 3 is 7.7 s, 1.9 s, and 2.8 s, respectively. The training time in region 4 is 3.1 s, 3.6 s, and 3.3 s, respectively. The findings demonstrate that the suggested algorithmic model performs better than the other and can identify the structure of LV distribution networks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mascot0111完成签到,获得积分10
3秒前
书俭发布了新的文献求助10
3秒前
4秒前
4秒前
英俊的铭应助Misaki采纳,获得10
5秒前
5秒前
Renee应助hihi采纳,获得10
8秒前
8秒前
科研通AI2S应助积极书双采纳,获得10
8秒前
Orange应助初级小白采纳,获得10
8秒前
9秒前
jwj完成签到,获得积分20
9秒前
10秒前
10秒前
11秒前
丘比特应助qian采纳,获得10
11秒前
善学以致用应助xxx采纳,获得10
11秒前
忐忑的猪发布了新的文献求助10
11秒前
领导范儿应助司空三问采纳,获得10
13秒前
Orange应助嗨哈尼采纳,获得10
13秒前
短短长又长完成签到 ,获得积分10
13秒前
zZ完成签到,获得积分10
14秒前
14秒前
14秒前
邓鹏煊发布了新的文献求助10
15秒前
糖不太甜发布了新的文献求助10
15秒前
16秒前
溪鱼完成签到,获得积分10
16秒前
doolp完成签到,获得积分10
18秒前
忐忑的猪完成签到,获得积分10
19秒前
祖琦完成签到,获得积分10
19秒前
荼柒完成签到,获得积分10
20秒前
领导范儿应助糖不太甜采纳,获得10
21秒前
23秒前
23秒前
24秒前
25秒前
转眼间完成签到,获得积分10
26秒前
ws发布了新的文献求助10
27秒前
大模型应助外向的百川采纳,获得10
28秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160777
求助须知:如何正确求助?哪些是违规求助? 2811863
关于积分的说明 7893780
捐赠科研通 2470702
什么是DOI,文献DOI怎么找? 1315762
科研通“疑难数据库(出版商)”最低求助积分说明 631003
版权声明 602053