Low-power-consumption and excellent-retention-characteristics carbon nanotube optoelectronic synaptic transistors for flexible artificial visual systems

碳纳米管 材料科学 功率消耗 晶体管 纳米技术 光电子学 碳纳米管场效应晶体管 纳米管 功率(物理) 电气工程 场效应晶体管 工程类 物理 电压 量子力学
作者
Dan Zhang,Yinxiao Li,Nianzi Sui,Min Li,Shuangshuang Shao,Jiaqi Li,Benxiang Li,Wenming Yang,Xiaowei Wang,Ting Zhang,Wanzhen Xu,Jianwen Zhao
出处
期刊:Applied Materials Today [Elsevier]
卷期号:38: 102234-102234 被引量:1
标识
DOI:10.1016/j.apmt.2024.102234
摘要

Low-power-consumption and excellent-retention-characteristics flexible optoelectronic synaptic devices have become the key units in the advancement of neuromorphic computing systems. In this work, we firstly utilized three photosensitive pyridine-based polyfluorene derivatives to selectively isolate semiconducting single-walled carbon nanotubes (sc-SWCNTs) from commercial SWCNTs and successfully constructed low-power-consumption (98.71 aJ) and excellent-memory-characteristics (Up to 1100s) optoelectronic synaptic SWCNT TFT devices for flexible artificial visual systems (The recognition accuracy up to 97.06 %) without adding any other photosensitive materials in SWCNT TFTs. As-prepared optoelectronic synaptic TFT devices showcase excellent electrical properties with exceptional uniformity, enhancement-mode and high on-off ratios (Up to 106), low operating voltages (-2 V to 0 V), and small subthreshold swings (SS, 75 mV/dec). More importantly, they can simulate not only excitatory postsynaptic currents (EPSCs) and paired-pulse facilitation (PPF, up to 272 %) with the power consumption as low as 98.71 aJ per optical spike under light-pulse stimulation but also the traditional Pavlovian conditioned reflex and artificial visual memory system with excellent memory behaviors (Up to 1100s). Through an in-depth analysis of their working mechanism, we successfully emulated long-term potentiation (LTP) and long-term depression (LTD) phenomena, achieving a 97.06 % accuracy rate in the MNIST (Modified National Institute of Standards and Technology database) recognition task. Furthermore, employing these TFTs, we successfully constructed a five-layer convolutional neural network that operates without any external storage and computational units, validating its image recognition capabilities on the Fashion-MNIST dataset with an accuracy rate of 90.58 %, closely approaching the ideal scenario of 91.25 %. These findings provide a robust technological foundation for the development of highly efficient and flexible artificial visual systems in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wwww发布了新的文献求助10
刚刚
彩色的不可完成签到,获得积分20
刚刚
宣孤菱发布了新的文献求助30
1秒前
2秒前
宋怡慷完成签到,获得积分10
2秒前
研友_VZG7GZ应助卷卷采纳,获得10
3秒前
陈住气发布了新的文献求助10
3秒前
3秒前
jojo发布了新的文献求助10
3秒前
MM发布了新的文献求助10
4秒前
完美世界应助ruhua采纳,获得10
4秒前
wangheng发布了新的文献求助30
4秒前
4秒前
linda发布了新的文献求助10
5秒前
醉烟雨完成签到,获得积分10
5秒前
6秒前
AAAAAAAAAAA发布了新的文献求助10
6秒前
天天快乐应助等你下课采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得30
7秒前
我是老大应助科研通管家采纳,获得10
7秒前
烟花应助科研通管家采纳,获得10
7秒前
7秒前
李健应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
天真的邴发布了新的文献求助10
8秒前
小李发布了新的文献求助10
9秒前
9秒前
jojo完成签到,获得积分10
9秒前
anbiii发布了新的文献求助20
9秒前
setmefree发布了新的文献求助10
10秒前
11秒前
充电宝应助加菲丰丰采纳,获得10
12秒前
lllll123发布了新的文献求助30
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149194
求助须知:如何正确求助?哪些是违规求助? 2800255
关于积分的说明 7839329
捐赠科研通 2457827
什么是DOI,文献DOI怎么找? 1308138
科研通“疑难数据库(出版商)”最低求助积分说明 628428
版权声明 601706