The C-BixSnSb composite toward fast-charging and long-life sodium-ion batteries

复合数 离子 材料科学 环境科学 计算机科学 化学 复合材料 冶金 有机化学
作者
Jiaojiao Zhao,Baoyang Liu,Yao Wang,Xuli Ding
出处
期刊:Journal of energy storage [Elsevier]
卷期号:93: 112407-112407 被引量:2
标识
DOI:10.1016/j.est.2024.112407
摘要

Sodium ion batteries (SIBs) fitted with high-rate and high-capacity anodes are attractive for their higher energy density and faster charging capability. However, it is still a challenge to develop high-energy SIBs with high power and long life, due to the sluggish kinetic and limited Na+ insertion in electrode materials. The inherent crystal structure and constituent element are two important factors to resolve the critical issues faced above. Taking the merits of layer-structure and middle-entropy, herein, we proposed and designed a high ion-conductive composite combing with ternary alloy and layered BixSnSb@C nanofibers, which eliminate ion migration barriers while maintaining the structural framework for superior rate property and cycle stability. Used as anode for SIBs, the multiphase BixSnSb@C with adjustable Bi content exhibits excellent Na storage capability as compared to their single phase counterpart. Specially, up to a rate of 132C (50 A g−1), the capacity is still as high as 400 mAh g−1, meanwhile, after 5000 charge and discharge cycles at a current density of 12C, the capacity still maintains 85 % of its initial capacity, which outperform the individual Bi- or SnSb-based materials. The superior electrochemical performances originate from the middle-entropy nature and layer structure of BiSnSb alloy, which can provide more channels for fast Na+ transport, and accommodate large volume changes. Besides, the activity energy and ions transport resistance of Na+ in different composites were evaluated. Furthermore, the full-cell coupled with NaNi1/3Fe1/3Mn1/3O2 as cathode was formed and a capacity retention of ∼80 % is realized in 100 cycles. The results show that the BixSnSb@C is a potential anode for fast-charging Na-ion batteries and could be used to guide the design of multi-component alloy-base anodes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hu完成签到 ,获得积分10
1秒前
liuyan432完成签到,获得积分10
1秒前
cc完成签到,获得积分10
1秒前
易烊千玺完成签到,获得积分20
1秒前
哒哒哒哒完成签到,获得积分10
1秒前
2秒前
李健应助陶醉觅夏采纳,获得10
3秒前
3秒前
独特凡松完成签到,获得积分10
3秒前
木笔朱瑾完成签到 ,获得积分10
4秒前
Rinohalt完成签到,获得积分10
4秒前
5秒前
孙梁子完成签到,获得积分10
5秒前
核桃花生奶兔完成签到 ,获得积分10
6秒前
请叫我风吹麦浪应助HJJHJH采纳,获得10
7秒前
8秒前
孙奕发布了新的文献求助10
8秒前
xiaotian_fan完成签到,获得积分10
8秒前
10秒前
10秒前
科研通AI2S应助laochen采纳,获得10
10秒前
盘尼西林发布了新的文献求助10
10秒前
迟大猫应助专心搞学术采纳,获得10
11秒前
13秒前
孙奕完成签到,获得积分10
14秒前
14秒前
俟天晴完成签到,获得积分10
14秒前
淡定问芙发布了新的文献求助30
15秒前
17秒前
Lewis完成签到,获得积分10
18秒前
orixero应助TranYan采纳,获得10
18秒前
猪猪hero发布了新的文献求助10
20秒前
21秒前
今后应助333采纳,获得10
22秒前
pu发布了新的文献求助10
23秒前
Akim应助梓榆采纳,获得10
24秒前
劼大大完成签到,获得积分10
24秒前
最优解完成签到 ,获得积分20
25秒前
25秒前
通~发布了新的文献求助10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794