Non-destructive Degradation Pattern Decoupling for Ultra-early Battery Prototype Verification Using Physics-informed Machine Learning

解耦(概率) 降级(电信) 电池(电) 计算机科学 人工智能 材料科学 工程类 物理 电子工程 控制工程 量子力学 功率(物理)
作者
Shengyu Tao,Mengtian Zhang,Zixi Zhao,Haoyang Li,Ruifei Ma,Yunhong Che,Xin Sun,Lin Su,Xiangyu Chen,Zihao Zhou,Heng Chang,Tingwei Cao,Xiao Xiao,Yaojun Liu,Wenjun Yu,Zhongling Xu,Yang Li,Han Hao,Xuan Zhang,Xiao Hu,Guangmin ZHou
出处
期刊:Cornell University - arXiv 被引量:2
标识
DOI:10.48550/arxiv.2406.00276
摘要

Manufacturing complexities and uncertainties have impeded the transition from material prototypes to commercial batteries, making prototype verification critical to quality assessment. A fundamental challenge involves deciphering intertwined chemical processes to characterize degradation patterns and their quantitative relationship with battery performance. Here we show that a physics-informed machine learning approach can quantify and visualize temporally resolved losses concerning thermodynamics and kinetics only using electric signals. Our method enables non-destructive degradation pattern characterization, expediting temperature-adaptable predictions of entire lifetime trajectories, rather than end-of-life points. The verification speed is 25 times faster yet maintaining 95.1% accuracy across temperatures. Such advances facilitate more sustainable management of defective prototypes before massive production, establishing a 19.76 billion USD scrap material recycling market by 2060 in China. By incorporating stepwise charge acceptance as a measure of the initial manufacturing variability of normally identical batteries, we can immediately identify long-term degradation variations. We attribute the predictive power to interpreting machine learning insights using material-agnostic featurization taxonomy for degradation pattern decoupling. Our findings offer new possibilities for dynamic system analysis, such as battery prototype degradation, demonstrating that complex pattern evolutions can be accurately predicted in a non-destructive and data-driven fashion by integrating physics-informed machine learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喊我彩彩完成签到,获得积分10
刚刚
唐唐完成签到 ,获得积分10
1秒前
1秒前
..完成签到 ,获得积分10
1秒前
江南完成签到,获得积分10
2秒前
人人有责完成签到,获得积分10
2秒前
3秒前
biekanwo完成签到,获得积分10
3秒前
3秒前
在水一方应助hah采纳,获得10
4秒前
5秒前
5秒前
zy发布了新的文献求助10
5秒前
5秒前
7秒前
小木虫完成签到,获得积分10
7秒前
领导范儿应助化学先生采纳,获得10
8秒前
燕子完成签到,获得积分10
8秒前
9秒前
10秒前
10秒前
小白完成签到,获得积分10
12秒前
zzzkyt发布了新的文献求助10
12秒前
13秒前
沉静傲白发布了新的文献求助10
13秒前
jnngshan应助科研通管家采纳,获得10
16秒前
ding应助科研通管家采纳,获得10
16秒前
充电宝应助科研通管家采纳,获得10
16秒前
spring应助科研通管家采纳,获得10
16秒前
打打应助科研通管家采纳,获得10
16秒前
16秒前
CodeCraft应助科研通管家采纳,获得10
16秒前
Polymer72应助科研通管家采纳,获得10
17秒前
乐乐应助科研通管家采纳,获得10
17秒前
上官若男应助科研通管家采纳,获得10
17秒前
17秒前
jnngshan应助科研通管家采纳,获得10
17秒前
大个应助科研通管家采纳,获得30
17秒前
852应助科研通管家采纳,获得10
17秒前
kk119完成签到,获得积分10
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
中国荞麦品种志 1000
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3358577
求助须知:如何正确求助?哪些是违规求助? 2981729
关于积分的说明 8700341
捐赠科研通 2663366
什么是DOI,文献DOI怎么找? 1458452
科研通“疑难数据库(出版商)”最低求助积分说明 675112
邀请新用户注册赠送积分活动 666149