光电子学
铟
量子点
铌
材料科学
兴奋剂
氧化铌
二极管
发光二极管
图层(电子)
活动层
氧化物
纳米技术
冶金
薄膜晶体管
作者
Lin Jianrong,Wenhui Fang,Haixing Tan,Haojun Zhang,Jingfei Dai,Ziqing Liu,Si Liu,Jianwen Chen,Runfeng Wu,Hua Xu,Kar Wei Ng,Peng Xiao,Baiquan Liu
标识
DOI:10.1002/lpor.202400276
摘要
Abstract Active materials play a crucial role in the performance of phototransistors. However, the discovery of a novel and versatile active material is a big challenge. For the first time, phototransistors with ultrathin niobium‐doped indium oxide (InNbO) active layer are fabricated. The InNbO phototransistors without additional light‐absorbing layers exhibit the performance with a high average mobility of 22.86 cm 2 V −1 s −1 , a turn‐on voltage of −0.75 V, a low sub threshold swing of 0.18 V/decade, and a high on/off current ratio of 5.74 × 10 8 . Detailed studies show that Nb is the key to suppress the free carrier generation due to the strong bonding strength of Nb─O. In addition, the InNbO phototransistors exhibit a very broad spectral responsivity with a photocurrent of 4.72 × 10 −4 A, a photosensitivity of 1.69 × 10 8 , and a high detectivity of 3.33 × 10 13 Jones under violet (405 nm) light illumination, which is significantly higher than that of the IGZO phototransistors. Furthermore, an active‐matrix quantum‐dot light‐emitting diode pixel circuit based on InNbO phototransistors is demonstrated. The findings not only indicate that InNbO is a new active material for phototransistors, but also suggest that InNbO‐based phototransistors have a great potential for the next‐generation interactive display technology.
科研通智能强力驱动
Strongly Powered by AbleSci AI