ParaCPI: A Parallel Graph Convolutional Network for Compound-Protein Interaction Prediction

计算机科学 图形 人工智能 理论计算机科学
作者
Longxin Zhang,Wenliang Zeng,Jingsheng Chen,Jianguo Chen,Keqin Li
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:21 (5): 1565-1578
标识
DOI:10.1109/tcbb.2024.3404889
摘要

Identifying compound-protein interactions (CPIs) is critical in drug discovery, as accurate prediction of CPIs can remarkably reduce the time and cost of new drug development. The rapid growth of existing biological knowledge has opened up possibilities for leveraging known biological knowledge to predict unknown CPIs. However, existing CPI prediction models still fall short of meeting the needs of practical drug discovery applications. A novel parallel graph convolutional network model for CPI prediction (ParaCPI) is proposed in this study. This model constructs feature representation of compounds using a unique approach to predict unknown CPIs from known CPI data more effectively. Experiments are conducted on five public datasets, and the results are compared with current state-of-the-art (SOTA) models under three different experimental settings to evaluate the model's performance. In the three cold-start settings, ParaCPI achieves an average performance gain of 26.75%, 23.84%, and 14.68% in terms of area under the curve compared with the other SOTA models. In addition, the results of the experiments in the case study show ParaCPI's superior ability to predict unknown CPIs based on known data, with higher accuracy and stronger generalization compared with the SOTA models. Researchers can leverage ParaCPI to accelerate the drug discovery process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助江峰采纳,获得10
刚刚
2秒前
3秒前
柒八染发布了新的文献求助10
4秒前
6秒前
6秒前
Owen应助CYJ-2采纳,获得10
6秒前
zjxhjj123发布了新的文献求助10
6秒前
Jasper应助sleet采纳,获得20
7秒前
8秒前
有机发布了新的文献求助10
8秒前
辉爱慧完成签到 ,获得积分10
8秒前
8秒前
9秒前
江峰完成签到,获得积分10
10秒前
宽叶榕发布了新的文献求助10
11秒前
11秒前
RC_Wang应助虾米采纳,获得10
11秒前
leopold发布了新的文献求助10
11秒前
12秒前
12秒前
Polymer72应助Sam十九采纳,获得20
13秒前
江峰发布了新的文献求助10
13秒前
菠菜菜str发布了新的文献求助10
14秒前
luyuran发布了新的文献求助10
14秒前
14秒前
李健的小迷弟应助疯疯冯采纳,获得10
16秒前
我想当二郎神完成签到,获得积分10
16秒前
xiaoni发布了新的文献求助10
16秒前
Endymion发布了新的文献求助10
17秒前
Dr彭0923完成签到,获得积分10
17秒前
CYJ-2发布了新的文献求助10
17秒前
17秒前
18秒前
18秒前
等待忆安完成签到,获得积分10
19秒前
宽叶榕完成签到,获得积分20
19秒前
20秒前
白云完成签到,获得积分10
20秒前
四方应助医生小白采纳,获得50
20秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 970
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Forensic Chemistry 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3392486
求助须知:如何正确求助?哪些是违规求助? 3003128
关于积分的说明 8807599
捐赠科研通 2689833
什么是DOI,文献DOI怎么找? 1473328
科研通“疑难数据库(出版商)”最低求助积分说明 681547
邀请新用户注册赠送积分活动 674351