A Machine Learning Algorithm Avoids Unnecessary Paracentesis for Exclusion of SBP in Cirrhosis in Resource-Limited Settings

医学 穿刺 肝硬化 算法 机器学习 重症监护医学 内科学 计算机科学 腹水
作者
Scott Silvey,Nilang Patel,Jinze Liu,Asiya Tafader,Mahum Nadeem,Galvin Dhaliwal,Jacqueline G. O’Leary,Heather Patton,Timothy R. Morgan,Shari S. Rogal,Jasmohan S. Bajaj
出处
期刊:Clinical Gastroenterology and Hepatology [Elsevier]
标识
DOI:10.1016/j.cgh.2024.06.015
摘要

Background and Aims Despite the poor prognosis associated with missed or delayed spontaneous bacterial peritonitis (SBP) diagnosis, <15% get timely paracentesis, which persists despite guidelines/education in the US. Measures to exclude SBP non-invasively where timely paracentesis cannot be performed could streamline this burden. Methods Using Veterans Health Administration Corporate Data Warehouse (VHA-CDW) we included cirrhosis patients between 2009-2019 who underwent timely paracentesis and collected relevant clinical information (demographics, cirrhosis severity, medications, vitals, and comorbidities). XGBoost-models were trained on 75% of the primary cohort, with 25% reserved for testing. The final model was further validated in two cohorts: Validation cohort #1: In VHA-CDW, those without prior SBP who received 2nd early paracentesis, and Validation cohort #2: Prospective data from 276 non-electively admitted University hospital patients. Results Negative predictive values (NPV) at 5,10 & 15% probability cutoffs were examined. Primary cohort: n=9,643 (mean age 63.1±8.7 years, 97.2% men, SBP:15.0%) received first early paracentesis. Testing-set NPVs for SBP were 96.5%, 93.0% and 91.6% at the 5%, 10% and 15% probability thresholds respectively. In Validation cohort #1: n=2844 (mean age 63.14±8.37 years, 97.1% male, SBP: 9.7%) with NPVs were 98.8%, 95.3% and 94.5%. In Validation cohort #2: n=276 (mean age 56.08±9.09, 59.6% male, SBP: 7.6%) with NPVs were 100%, 98.9% and 98.0% The final ML model showed the greatest net benefit on decision-curve analyses. Conclusions A machine learning model generated using routinely collected variables excluded SBP with high negative predictive value. Applying this model could ease the need to provide paracentesis in resource-limited settings by excluding those unlikely to have SBP. Despite the poor prognosis associated with missed or delayed spontaneous bacterial peritonitis (SBP) diagnosis, <15% get timely paracentesis, which persists despite guidelines/education in the US. Measures to exclude SBP non-invasively where timely paracentesis cannot be performed could streamline this burden. Using Veterans Health Administration Corporate Data Warehouse (VHA-CDW) we included cirrhosis patients between 2009-2019 who underwent timely paracentesis and collected relevant clinical information (demographics, cirrhosis severity, medications, vitals, and comorbidities). XGBoost-models were trained on 75% of the primary cohort, with 25% reserved for testing. The final model was further validated in two cohorts: Validation cohort #1: In VHA-CDW, those without prior SBP who received 2nd early paracentesis, and Validation cohort #2: Prospective data from 276 non-electively admitted University hospital patients. Negative predictive values (NPV) at 5,10 & 15% probability cutoffs were examined. Primary cohort: n=9,643 (mean age 63.1±8.7 years, 97.2% men, SBP:15.0%) received first early paracentesis. Testing-set NPVs for SBP were 96.5%, 93.0% and 91.6% at the 5%, 10% and 15% probability thresholds respectively. In Validation cohort #1: n=2844 (mean age 63.14±8.37 years, 97.1% male, SBP: 9.7%) with NPVs were 98.8%, 95.3% and 94.5%. In Validation cohort #2: n=276 (mean age 56.08±9.09, 59.6% male, SBP: 7.6%) with NPVs were 100%, 98.9% and 98.0% The final ML model showed the greatest net benefit on decision-curve analyses. A machine learning model generated using routinely collected variables excluded SBP with high negative predictive value. Applying this model could ease the need to provide paracentesis in resource-limited settings by excluding those unlikely to have SBP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
武大帝77完成签到 ,获得积分10
1秒前
Singularity应助wyt采纳,获得10
7秒前
yupingqin完成签到 ,获得积分10
8秒前
虚幻元风完成签到 ,获得积分10
16秒前
btcat完成签到,获得积分10
33秒前
小彭友完成签到 ,获得积分10
34秒前
打打应助活力青筠采纳,获得10
35秒前
皮皮完成签到 ,获得积分10
39秒前
Worenxian完成签到,获得积分10
39秒前
42秒前
水草帽完成签到 ,获得积分10
42秒前
活力青筠完成签到,获得积分10
44秒前
mzhang2完成签到 ,获得积分10
46秒前
活力青筠发布了新的文献求助10
47秒前
kanong完成签到,获得积分0
51秒前
风不尽,树不静完成签到 ,获得积分10
59秒前
hcjxj完成签到,获得积分10
59秒前
肥猫完成签到 ,获得积分10
1分钟前
滕皓轩完成签到 ,获得积分10
1分钟前
荔枝完成签到 ,获得积分10
1分钟前
水草帽完成签到 ,获得积分10
1分钟前
清秀的怀蕊完成签到 ,获得积分10
1分钟前
mrwang完成签到 ,获得积分10
1分钟前
华仔应助东哥采纳,获得20
1分钟前
开放访天完成签到 ,获得积分10
1分钟前
先锋老刘001完成签到,获得积分10
1分钟前
NN发布了新的文献求助30
1分钟前
稻子完成签到 ,获得积分10
1分钟前
王kk完成签到 ,获得积分10
1分钟前
NN完成签到,获得积分10
2分钟前
司纤户羽完成签到 ,获得积分10
2分钟前
junio完成签到 ,获得积分10
2分钟前
没用的三轮完成签到,获得积分10
2分钟前
2分钟前
东哥发布了新的文献求助20
2分钟前
新奇完成签到 ,获得积分10
2分钟前
dent强完成签到 ,获得积分10
2分钟前
途啊哈哈完成签到,获得积分10
3分钟前
缓慢的微笑完成签到 ,获得积分10
3分钟前
croissante完成签到 ,获得积分10
3分钟前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Ethnicities: Media, Health, and Coping 700
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3088549
求助须知:如何正确求助?哪些是违规求助? 2740736
关于积分的说明 7561204
捐赠科研通 2390734
什么是DOI,文献DOI怎么找? 1267982
科研通“疑难数据库(出版商)”最低求助积分说明 613947
版权声明 598678