计算生物学
生物
遗传建筑学
计算机科学
遗传学
数量性状位点
基因
作者
Tao Zhu,Chunjiao Xia,Ranran Yu,Xinkai Zhou,Xingbing Xu,Lin Wang,Zhanxiang Zong,Junjiao Yang,Yinmeng Liu,Luchang Ming,Y. Nancy You,Dijun Chen,Weibo Xie
标识
DOI:10.1101/2024.06.24.600524
摘要
Abstract Unraveling the regulatory mechanisms that govern complex traits is pivotal for advancing crop improvement. Here we present a comprehensive regulome atlas for rice ( Oryza sativa ), charting the chromatin accessibility across 23 distinct tissues from three representative varieties. Our study uncovers 117,176 unique open chromatin regions (OCRs), accounting for ∼15% of the rice genome, a notably higher proportion compared to previous reports in plants. Integrating RNA-seq data from matched tissues, we confidently predict 59,075 OCR-to-gene links, with enhancers constituting 69.54% of these associations, including many known enhancer-to-gene links. Leveraging this resource, we re-evaluate genome-wide association study results and discover a previously unknown function of OsbZIP06 in seed germination, which we subsequently confirm through experimental validation. We optimize deep learning models to decode regulatory grammar, achieving robust modeling of tissue-specific chromatin accessibility. This approach allows to predict cross-variety regulatory dynamics from genomic sequences, shedding light on the genetic underpinnings of cis-regulatory divergence and morphological disparities between varieties. Overall, our study establishes a foundational resource for rice functional genomics and precision molecular breeding, providing valuable insights into regulatory mechanisms governing complex traits.
科研通智能强力驱动
Strongly Powered by AbleSci AI