有界函数
趋化性
扩散
拉普拉斯算子
数学
物理
数学分析
化学
热力学
生物化学
受体
出处
期刊:AIMS mathematics
[American Institute of Mathematical Sciences]
日期:2024-01-01
卷期号:9 (6): 16168-16186
摘要
<abstract><p>In this paper, the chemotaxis-Stokes system with slow $ p $-Laplacian diffusion and logistic source as follows</p> <p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} \left\{ \begin{aligned} &n_t+u\cdot\nabla n = \nabla\cdot(|\nabla n|^{p-2}\nabla n)-\nabla\cdot(n\nabla c)+\mu n(1-n), &x\in\Omega, t>0, \\ &c_t+u\cdot\nabla c = \Delta c-cn, & x\in\Omega, t>0, \\ &u_t+\nabla P = \Delta u+n\nabla\Phi, & x\in\Omega, t>0, \\ &\nabla\cdot u = 0, &\; x\in\Omega, t>0\; \end{aligned} \right. \end{equation*} $\end{document} </tex-math></disp-formula></p> <p>was considered in a bounded domain $ \Omega\subset\mathbb{R}^3 $ with smooth boundary under homogeneous Neumann-Neumann-Dirichlet boundary conditions. Subject to the effect of logistic source, we proved the system exists a global bounded weak solution for any $ p > 2 $.</p></abstract>
科研通智能强力驱动
Strongly Powered by AbleSci AI