Identification of a Risk Signature and Immune Cell Infiltration Based on Extracellular Matrix-Related lncRNAs in Lung Adenocarcinoma

比例危险模型 列线图 肿瘤科 腺癌 生存分析 医学 肺癌 单变量 内科学 癌症 多元统计 计算机科学 机器学习
作者
Moyuan Zhang,Tianqi Cen,Shaohui Huang,Jing Wang,Xuan Wu,Xingru Zhao,Xu Zhiwei,Xiaoju Zhang
出处
期刊:Critical Reviews in Eukaryotic Gene Expression [Begell House]
卷期号:35 (1): 49-65
标识
DOI:10.1615/critreveukaryotgeneexpr.v34.i1.50
摘要

Lung adenocarcinoma (LUAD) is the leading cause of cancer-related deaths globally, with late diagnoses often resulting in poor prognoses. The extracellular matrix (ECM) plays a crucial role in cancer cell processes. Using big data from RNA-seq of LUAD, we aimed to screen ECM-related lncRNAs (long noncoding RNAs) to determine their prognostic significance. Our study analyzed the LUAD cohort from The Cancer Genome Atlas (TCGA). Univariate Cox analysis identified prognostic lncRNAs, and least absolute shrinkage and selection operator (LASSO) regression analysis, followed by multivariate Cox analysis, was used to construct a prognostic model. Kaplan-Meier and ROC curves evaluated the model's prognostic performance. A nomogram was created to predict 3-year survival. Enrichment analysis identified biological processes and pathways involved in the signature. Correlations with the tumor microenvironment (TME) and tumor mutation burden (TMB) were analyzed, and potential drug sensitivities for LUAD were predicted. We initially identified 218 ECM-associated genes and 427 ECM-associated lncRNAs within the TCGA LUAD cohort. Subsequent univariate Cox regression analysis selected 26 lncRNAs with significant prognostic value, and an overall survival (OS)-based LASSO Cox regression model further narrowed this to 14 lncRNAs. Multiple Cox regression analyses then distilled these down to 8 critical lncRNAs forming our prognostic risk signature. Nomograms accurately predicted survival. Finally, several potential therapeutic drugs, including afatinib and crizotinib, were identified. Big data analysis established a prognostic signature that predicts survival and immunization in LUAD patients, providing new insights into survival and treatment options.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Crystal完成签到,获得积分10
刚刚
T_MC郭完成签到,获得积分10
刚刚
1秒前
cks发布了新的文献求助10
2秒前
2秒前
2秒前
wenlei发布了新的文献求助10
3秒前
冷萃咖啡完成签到,获得积分10
3秒前
熙梓日记完成签到,获得积分10
4秒前
一二完成签到,获得积分10
5秒前
PDIF-CN2完成签到,获得积分10
6秒前
6秒前
yangyangyang发布了新的文献求助10
7秒前
firefly完成签到 ,获得积分10
7秒前
田田完成签到 ,获得积分10
7秒前
7秒前
夏熠完成签到,获得积分10
8秒前
852应助星河采纳,获得10
10秒前
keep完成签到,获得积分10
10秒前
石武完成签到,获得积分10
10秒前
小杨发布了新的文献求助10
11秒前
Donger完成签到 ,获得积分10
11秒前
冷静烧鹅发布了新的文献求助10
11秒前
uon完成签到,获得积分10
11秒前
12秒前
科研通AI5应助wenlei采纳,获得10
12秒前
超级的诗兰完成签到,获得积分10
13秒前
14秒前
科研通AI5应助爱吃巧乐兹采纳,获得10
14秒前
15秒前
852应助双门洞采纳,获得10
15秒前
玩命的书琴完成签到,获得积分10
15秒前
黑大帅完成签到,获得积分10
16秒前
16秒前
17秒前
吴巷玉完成签到,获得积分10
17秒前
Nic发布了新的文献求助10
18秒前
香蕉觅云应助酷酷码采纳,获得10
19秒前
19秒前
樱桃完成签到 ,获得积分10
20秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5213290
求助须知:如何正确求助?哪些是违规求助? 4389206
关于积分的说明 13666238
捐赠科研通 4250143
什么是DOI,文献DOI怎么找? 2331945
邀请新用户注册赠送积分活动 1329645
关于科研通互助平台的介绍 1283189