Identification of a Risk Signature and Immune Cell Infiltration Based on Extracellular Matrix-Related lncRNAs in Lung Adenocarcinoma

比例危险模型 列线图 肿瘤科 腺癌 生存分析 医学 肺癌 单变量 内科学 癌症 多元统计 计算机科学 机器学习
作者
Moyuan Zhang,Tianqi Cen,Shaohui Huang,Jing Wang,Xuan Wu,Xingru Zhao,Xu Zhiwei,Xiaoju Zhang
出处
期刊:Critical Reviews in Eukaryotic Gene Expression [Begell House Inc.]
卷期号:35 (1): 49-65
标识
DOI:10.1615/critreveukaryotgeneexpr.v34.i1.50
摘要

Lung adenocarcinoma (LUAD) is the leading cause of cancer-related deaths globally, with late diagnoses often resulting in poor prognoses. The extracellular matrix (ECM) plays a crucial role in cancer cell processes. Using big data from RNA-seq of LUAD, we aimed to screen ECM-related lncRNAs (long noncoding RNAs) to determine their prognostic significance. Our study analyzed the LUAD cohort from The Cancer Genome Atlas (TCGA). Univariate Cox analysis identified prognostic lncRNAs, and least absolute shrinkage and selection operator (LASSO) regression analysis, followed by multivariate Cox analysis, was used to construct a prognostic model. Kaplan-Meier and ROC curves evaluated the model's prognostic performance. A nomogram was created to predict 3-year survival. Enrichment analysis identified biological processes and pathways involved in the signature. Correlations with the tumor microenvironment (TME) and tumor mutation burden (TMB) were analyzed, and potential drug sensitivities for LUAD were predicted. We initially identified 218 ECM-associated genes and 427 ECM-associated lncRNAs within the TCGA LUAD cohort. Subsequent univariate Cox regression analysis selected 26 lncRNAs with significant prognostic value, and an overall survival (OS)-based LASSO Cox regression model further narrowed this to 14 lncRNAs. Multiple Cox regression analyses then distilled these down to 8 critical lncRNAs forming our prognostic risk signature. Nomograms accurately predicted survival. Finally, several potential therapeutic drugs, including afatinib and crizotinib, were identified. Big data analysis established a prognostic signature that predicts survival and immunization in LUAD patients, providing new insights into survival and treatment options.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zz发布了新的文献求助10
1秒前
cza完成签到,获得积分10
1秒前
mystar完成签到,获得积分10
1秒前
喵喵发布了新的文献求助10
2秒前
宣以晴完成签到,获得积分10
2秒前
奔跑的斌哥完成签到,获得积分10
2秒前
nini完成签到,获得积分10
2秒前
2秒前
zhao发布了新的文献求助10
2秒前
123发布了新的文献求助10
2秒前
siyong发布了新的文献求助30
2秒前
Shilly完成签到,获得积分10
3秒前
lululu发布了新的文献求助10
3秒前
3秒前
刘佳梦发布了新的文献求助10
3秒前
feng8848完成签到,获得积分10
4秒前
xylxyl发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
6秒前
6秒前
无极微光应助Chnp采纳,获得20
6秒前
补药学习发布了新的文献求助10
7秒前
Clarissa完成签到,获得积分10
7秒前
8秒前
vvvg发布了新的文献求助10
8秒前
8秒前
xylxyl完成签到,获得积分10
9秒前
yqsf789发布了新的文献求助10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
刘佳梦完成签到,获得积分20
10秒前
10秒前
柚柚子发布了新的文献求助10
10秒前
骆驼完成签到,获得积分10
10秒前
lin发布了新的文献求助10
11秒前
聪慧的以彤完成签到,获得积分10
11秒前
小高个儿完成签到 ,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545851
求助须知:如何正确求助?哪些是违规求助? 4631846
关于积分的说明 14622939
捐赠科研通 4573564
什么是DOI,文献DOI怎么找? 2507609
邀请新用户注册赠送积分活动 1484354
关于科研通互助平台的介绍 1455594