重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Identification of a Risk Signature and Immune Cell Infiltration Based on Extracellular Matrix-Related lncRNAs in Lung Adenocarcinoma

比例危险模型 列线图 肿瘤科 腺癌 生存分析 医学 肺癌 单变量 内科学 癌症 多元统计 计算机科学 机器学习
作者
Moyuan Zhang,Tianqi Cen,Shaohui Huang,Jing Wang,Xuan Wu,Xingru Zhao,Xu Zhiwei,Xiaoju Zhang
出处
期刊:Critical Reviews in Eukaryotic Gene Expression [Begell House Inc.]
卷期号:35 (1): 49-65
标识
DOI:10.1615/critreveukaryotgeneexpr.v34.i1.50
摘要

Lung adenocarcinoma (LUAD) is the leading cause of cancer-related deaths globally, with late diagnoses often resulting in poor prognoses. The extracellular matrix (ECM) plays a crucial role in cancer cell processes. Using big data from RNA-seq of LUAD, we aimed to screen ECM-related lncRNAs (long noncoding RNAs) to determine their prognostic significance. Our study analyzed the LUAD cohort from The Cancer Genome Atlas (TCGA). Univariate Cox analysis identified prognostic lncRNAs, and least absolute shrinkage and selection operator (LASSO) regression analysis, followed by multivariate Cox analysis, was used to construct a prognostic model. Kaplan-Meier and ROC curves evaluated the model's prognostic performance. A nomogram was created to predict 3-year survival. Enrichment analysis identified biological processes and pathways involved in the signature. Correlations with the tumor microenvironment (TME) and tumor mutation burden (TMB) were analyzed, and potential drug sensitivities for LUAD were predicted. We initially identified 218 ECM-associated genes and 427 ECM-associated lncRNAs within the TCGA LUAD cohort. Subsequent univariate Cox regression analysis selected 26 lncRNAs with significant prognostic value, and an overall survival (OS)-based LASSO Cox regression model further narrowed this to 14 lncRNAs. Multiple Cox regression analyses then distilled these down to 8 critical lncRNAs forming our prognostic risk signature. Nomograms accurately predicted survival. Finally, several potential therapeutic drugs, including afatinib and crizotinib, were identified. Big data analysis established a prognostic signature that predicts survival and immunization in LUAD patients, providing new insights into survival and treatment options.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
糙糙科研发布了新的文献求助30
1秒前
锣大炮发布了新的文献求助10
1秒前
ll发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
上官若男应助安静采纳,获得10
3秒前
PeakKing完成签到,获得积分10
3秒前
3秒前
淡定元绿发布了新的文献求助10
4秒前
嘻嘻发布了新的文献求助10
4秒前
4秒前
mof发布了新的文献求助10
5秒前
852应助囡囡采纳,获得10
5秒前
5秒前
5秒前
chelsea完成签到,获得积分10
6秒前
6秒前
zhang发布了新的文献求助30
7秒前
荀中道发布了新的文献求助10
7秒前
8秒前
zz完成签到,获得积分10
8秒前
英姑应助YKX采纳,获得10
8秒前
yu完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
yxyer完成签到 ,获得积分10
9秒前
包美莹完成签到 ,获得积分10
10秒前
10秒前
10秒前
narthon完成签到,获得积分10
10秒前
zhao发布了新的文献求助10
10秒前
bulangni发布了新的文献求助30
11秒前
11秒前
YTTT完成签到,获得积分10
11秒前
11秒前
小王完成签到,获得积分10
12秒前
NexusExplorer应助mof采纳,获得10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466072
求助须知:如何正确求助?哪些是违规求助? 4570135
关于积分的说明 14322892
捐赠科研通 4496608
什么是DOI,文献DOI怎么找? 2463448
邀请新用户注册赠送积分活动 1452319
关于科研通互助平台的介绍 1427516