Identification of a Risk Signature and Immune Cell Infiltration Based on Extracellular Matrix-Related lncRNAs in Lung Adenocarcinoma

比例危险模型 列线图 肿瘤科 腺癌 生存分析 医学 肺癌 单变量 内科学 癌症 多元统计 计算机科学 机器学习
作者
Moyuan Zhang,Tianqi Cen,Shaohui Huang,Jing Wang,Xuan Wu,Xingru Zhao,Xu Zhiwei,Xiaoju Zhang
出处
期刊:Critical Reviews in Eukaryotic Gene Expression [Begell House Inc.]
卷期号:35 (1): 49-65
标识
DOI:10.1615/critreveukaryotgeneexpr.v34.i1.50
摘要

Lung adenocarcinoma (LUAD) is the leading cause of cancer-related deaths globally, with late diagnoses often resulting in poor prognoses. The extracellular matrix (ECM) plays a crucial role in cancer cell processes. Using big data from RNA-seq of LUAD, we aimed to screen ECM-related lncRNAs (long noncoding RNAs) to determine their prognostic significance. Our study analyzed the LUAD cohort from The Cancer Genome Atlas (TCGA). Univariate Cox analysis identified prognostic lncRNAs, and least absolute shrinkage and selection operator (LASSO) regression analysis, followed by multivariate Cox analysis, was used to construct a prognostic model. Kaplan-Meier and ROC curves evaluated the model's prognostic performance. A nomogram was created to predict 3-year survival. Enrichment analysis identified biological processes and pathways involved in the signature. Correlations with the tumor microenvironment (TME) and tumor mutation burden (TMB) were analyzed, and potential drug sensitivities for LUAD were predicted. We initially identified 218 ECM-associated genes and 427 ECM-associated lncRNAs within the TCGA LUAD cohort. Subsequent univariate Cox regression analysis selected 26 lncRNAs with significant prognostic value, and an overall survival (OS)-based LASSO Cox regression model further narrowed this to 14 lncRNAs. Multiple Cox regression analyses then distilled these down to 8 critical lncRNAs forming our prognostic risk signature. Nomograms accurately predicted survival. Finally, several potential therapeutic drugs, including afatinib and crizotinib, were identified. Big data analysis established a prognostic signature that predicts survival and immunization in LUAD patients, providing new insights into survival and treatment options.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助panpan采纳,获得10
刚刚
1秒前
聪明球球完成签到,获得积分20
2秒前
沈海完成签到,获得积分10
5秒前
5秒前
纯真忆秋发布了新的文献求助10
5秒前
6秒前
8秒前
Christine完成签到,获得积分10
8秒前
J_发布了新的文献求助10
8秒前
Lucas应助谦让新竹采纳,获得10
9秒前
Jasper应助兴奋的胡桃采纳,获得30
9秒前
10秒前
嘟嘟发布了新的文献求助10
10秒前
12秒前
12秒前
Hello应助axuan采纳,获得10
12秒前
顾矜应助千里采纳,获得10
12秒前
12秒前
vvvaee发布了新的文献求助10
17秒前
17秒前
22222发布了新的文献求助10
17秒前
18秒前
萨特完成签到,获得积分10
20秒前
回复活点复活完成签到,获得积分10
20秒前
21秒前
dandany完成签到,获得积分10
22秒前
22秒前
huajinoob发布了新的文献求助10
22秒前
23秒前
我是老大应助袁小圆采纳,获得10
24秒前
24秒前
24秒前
嗯哼应助科研通管家采纳,获得10
24秒前
可怜风雨应助科研通管家采纳,获得10
24秒前
完美世界应助科研通管家采纳,获得10
24秒前
24秒前
嗯哼应助科研通管家采纳,获得30
24秒前
隐形曼青应助科研通管家采纳,获得10
24秒前
24秒前
高分求助中
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3217943
求助须知:如何正确求助?哪些是违规求助? 2867202
关于积分的说明 8155265
捐赠科研通 2534052
什么是DOI,文献DOI怎么找? 1366768
科研通“疑难数据库(出版商)”最低求助积分说明 644865
邀请新用户注册赠送积分活动 617880