已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automating Prostate Cancer Grading: A Novel Deep Learning Framework for Automatic Prostate Cancer Grade Assessment using Classification and Segmentation

分级(工程) 前列腺癌 前列腺 分割 医学 人工智能 癌症 计算机科学 肿瘤科 内科学 工程类 土木工程
作者
Saidul Kabir,Rusab Sarmun,Rafif Mahmood Al Saady,Semir Vranić,M. Murugappan,Muhammad E. H. Chowdhury
标识
DOI:10.1007/s10278-025-01429-2
摘要

Prostate Cancer (PCa) is the second most common cancer in men and affects more than a million people each year. Grading prostate cancer is based on the Gleason grading system, a subjective and labor-intensive method for evaluating prostate tissue samples. The variability in diagnostic approaches underscores the urgent need for more reliable methods. By integrating deep learning technologies and developing automated systems, diagnostic precision can be improved, and human error minimized. The present work introduces a three-stage framework-based innovative deep-learning system for assessing PCa severity using the PANDA challenge dataset. After a meticulous selection process, 2699 usable cases were narrowed down from the initial 5160 cases after extensive data cleaning. There are three stages in the proposed framework: classification of PCa grades using deep neural networks (DNNs), segmentation of PCa grades, and computation of International Society for Urological Pathology (ISUP) grades using machine learning classifiers. Four classes of patches were classified and segmented (benign, Gleason 3, Gleason 4, and Gleason 5). Patch sampling at different sizes (500 × 500 and 1000 × 1000 pixels) was used to optimize the classification and segmentation processes. The segmentation performance of the proposed network is enhanced by a Self-organized operational neural network (Self-ONN) based DeepLabV3 architecture. Based on these predictions, the distribution percentages of each cancer grade within the whole slide images (WSI) were calculated. These features were then concatenated into machine learning classifiers to predict the final ISUP PCa grade. EfficientNet_b0 achieved the highest F1-score of 83.83% for classification, while DeepLabV3 + architecture based on self-ONN and EfficientNet encoder achieved the highest Dice Similarity Coefficient (DSC) score of 84.9% for segmentation. Using the RandomForest (RF) classifier, the proposed framework achieved a quadratic weighted kappa (QWK) score of 0.9215. Deep learning frameworks are being developed to grade PCa automatically and have shown promising results. In addition, it provides a prospective approach to a prognostic tool that can produce clinically significant results efficiently and reliably. Further investigations are needed to evaluate the framework's adaptability and effectiveness across various clinical scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
许三问完成签到 ,获得积分0
1秒前
文艺凉面完成签到 ,获得积分10
1秒前
Master完成签到 ,获得积分10
1秒前
不开心就吃糖完成签到 ,获得积分10
2秒前
CHL完成签到 ,获得积分10
2秒前
my完成签到 ,获得积分10
3秒前
黑煤球发布了新的文献求助10
3秒前
辛勤晓旋完成签到,获得积分10
4秒前
大个应助bzy采纳,获得10
5秒前
5秒前
shame完成签到 ,获得积分10
6秒前
labern发布了新的文献求助10
6秒前
关关完成签到 ,获得积分10
6秒前
段晓坤完成签到,获得积分10
6秒前
柳如花发布了新的文献求助10
6秒前
Crossing发布了新的文献求助10
6秒前
安详初蓝完成签到 ,获得积分10
7秒前
qq完成签到 ,获得积分0
7秒前
刘佳完成签到 ,获得积分10
7秒前
小号完成签到,获得积分10
7秒前
610完成签到 ,获得积分10
7秒前
adkdad完成签到,获得积分10
8秒前
科研狗完成签到 ,获得积分10
9秒前
薛wen晶完成签到 ,获得积分10
9秒前
清脆映真发布了新的文献求助10
9秒前
小鱼完成签到 ,获得积分10
9秒前
甜美坤完成签到 ,获得积分10
10秒前
缓慢的灵枫完成签到,获得积分10
10秒前
自信松思完成签到 ,获得积分10
11秒前
11111完成签到 ,获得积分10
11秒前
迷你的夜天完成签到 ,获得积分10
12秒前
siqilinwillbephd完成签到,获得积分10
12秒前
自渡完成签到 ,获得积分10
12秒前
四月的海棠完成签到 ,获得积分10
12秒前
寻桃阿玉完成签到 ,获得积分10
12秒前
12秒前
韩涵完成签到 ,获得积分10
12秒前
ddd完成签到 ,获得积分10
12秒前
766465完成签到 ,获得积分10
13秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
Mantodea of the World: Species Catalog 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3407659
求助须知:如何正确求助?哪些是违规求助? 3012193
关于积分的说明 8852942
捐赠科研通 2699358
什么是DOI,文献DOI怎么找? 1479946
科研通“疑难数据库(出版商)”最低求助积分说明 684111
邀请新用户注册赠送积分活动 678360

今日热心研友

tuanheqi
30
小稻草人
1
万能图书馆
1
MchemG
10
注:热心度 = 本日应助数 + 本日被采纳获取积分÷10