Cross‐shaped windows transformer with self‐supervised pretraining for clinically significant prostate cancer detection in bi‐parametric MRI

前列腺 参数统计 前列腺癌 磁共振成像 剂量学 癌症检测 医学影像学 放射科 医学物理学 核医学 医学 数学 统计 癌症 内科学
作者
Yuheng Li,Jacob Wynne,Jing Wang,Richard L. J. Qiu,Justin Roper,Shaoyan Pan,Ashesh B. Jani,Tian Liu,Pretesh R. Patel,Hui Mao,Xiaofeng Yang
出处
期刊:Medical Physics [Wiley]
卷期号:52 (2): 993-1004 被引量:7
标识
DOI:10.1002/mp.17546
摘要

Bi-parametric magnetic resonance imaging (bpMRI) has demonstrated promising results in prostate cancer (PCa) detection. Vision transformers have achieved competitive performance compared to convolutional neural network (CNN) in deep learning, but they need abundant annotated data for training. Self-supervised learning can effectively leverage unlabeled data to extract useful semantic representations without annotation and its associated costs. This study proposes a novel self-supervised learning framework and a transformer model to enhance PCa detection using prostate bpMRI. We introduce a novel end-to-end Cross-Shaped windows (CSwin) transformer UNet model, CSwin UNet, to detect clinically significant prostate cancer (csPCa) in prostate bpMRI. We also propose a multitask self-supervised learning framework to leverage unlabeled data and improve network generalizability. Using a large prostate bpMRI dataset (PI-CAI) with 1476 patients, we first pretrain CSwin transformer using multitask self-supervised learning to improve data-efficiency and network generalizability. We then finetune using lesion annotations to perform csPCa detection. We also test the network generalization using a separate bpMRI dataset with 158 patients (Prostate158). Five-fold cross validation shows that self-supervised CSwin UNet achieves 0.888 ± 0.010 aread under receiver operating characterstics curve (AUC) and 0.545 ± 0.060 Average Precision (AP) on PI-CAI dataset, significantly outperforming four comparable models (nnFormer, Swin UNETR, DynUNet, Attention UNet, UNet). On model generalizability, self-supervised CSwin UNet achieves 0.79 AUC and 0.45 AP, still outperforming all other comparable methods and demonstrating good generalization to external data. This study proposes CSwin UNet, a new transformer-based model for end-to-end detection of csPCa, enhanced by self-supervised pretraining to enhance network generalizability. We employ an automatic weighted loss (AWL) to unify pretext tasks, improving representation learning. Evaluated on two multi-institutional public datasets, our method surpasses existing methods in detection metrics and demonstrates good generalization to external data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
xjcy应助洪莲采纳,获得10
3秒前
4秒前
哈哈哈哈发布了新的文献求助10
5秒前
5秒前
飞机炸弹完成签到,获得积分10
6秒前
7秒前
xxx完成签到 ,获得积分10
10秒前
大佛老爷发布了新的文献求助10
10秒前
10秒前
12秒前
飞机炸弹发布了新的文献求助10
13秒前
安生发布了新的文献求助10
13秒前
13秒前
14秒前
柒咩咩完成签到 ,获得积分10
14秒前
smlij616完成签到 ,获得积分10
14秒前
汉堡包应助彩色的惊蛰采纳,获得10
17秒前
活力的语堂应助和谐乐儿采纳,获得10
17秒前
kcmat发布了新的文献求助10
18秒前
英勇含烟应助CHR采纳,获得10
19秒前
情怀应助杨一采纳,获得10
20秒前
cccccy发布了新的文献求助30
21秒前
大佛老爷完成签到,获得积分20
21秒前
小飞七应助WNing采纳,获得10
22秒前
荆扉完成签到,获得积分10
22秒前
22秒前
CipherSage应助ydy采纳,获得10
24秒前
贰鸟应助协和_子鱼采纳,获得10
24秒前
嗑cp完成签到 ,获得积分10
25秒前
26秒前
车 干完成签到 ,获得积分10
27秒前
Daisykiller应助洪莲采纳,获得10
27秒前
cccccy完成签到,获得积分20
28秒前
胡桃桃发布了新的文献求助10
28秒前
醉逍遥发布了新的文献求助10
31秒前
标致发布了新的文献求助10
32秒前
张德彪完成签到,获得积分10
33秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672767
求助须知:如何正确求助?哪些是违规求助? 3228872
关于积分的说明 9782477
捐赠科研通 2939308
什么是DOI,文献DOI怎么找? 1610825
邀请新用户注册赠送积分活动 760740
科研通“疑难数据库(出版商)”最低求助积分说明 736199