Utilizing explainable machine learning for progression-free survival prediction in high-grade serous ovarian cancer: insights from a prospective cohort study

医学 布里氏评分 卵巢癌 浆液性液体 肿瘤科 无进展生存期 前瞻性队列研究 机器学习 阶段(地层学) 腹水 内科学 队列 特征(语言学) 癌症 人工智能 总体生存率 计算机科学 古生物学 语言学 哲学 生物
作者
Zhuo Chen,Hui Ou‐Yang,Botao Sun,Jiashan Ding,Yu Zhang,Xinying Li
出处
期刊:International Journal of Surgery [Elsevier]
标识
DOI:10.1097/js9.0000000000002288
摘要

Background: High-grade serous ovarian cancer (HGSOC) remains one of the most challenging gynecological malignancies, with over 70% of ovarian cancer patients ultimately experiencing disease progression. The current prognostic tools for progression-free survival (PFS) in HGSOC patients have limitations. This study aims to develop an explainable machine learning (ML) model for predicting PFS in HGSOC patients. Methods: Nine ML algorithms for PFS prediction were developed using a prospective cohort of 310 HGSOC patients consecutively enrolled from a large Chinese tertiary hospital between January 2017 and December 2020. The optimal model was internally validated using the 1000 bootstrap method. The SHapley Additive exPlanations (SHAP) method was employed to interpret the model in terms of feature importance and feature effects. The final model, constructed with the optimal feature subset, was deployed as an interactive web-based Shiny app. Results: The random survival forest (RSF) model demonstrated superior predictive performance compared to other ML models, the RFS model constructed with an optimal feature subset in the optimal imputed dataset achieved a superior 1000 bootstrap C-index of 0.755 (95% CI: 0.750–0.780) and a Brier score of 0.183 (95% CI: 0.175–0.190). SHAP analysis identified tumor residual, HE4, FIGO stage, T stage, CA125, age, ascites volume, platelet counts, and BMI as the top nine contributing factors. It also revealed potential nonlinear relationships and important thresholds between HE4, CA125, age, ascites volume, platelet counts, the body mass index, and PFS risk. Additionally, interaction effects were found between tumor residual and age, HE4, and CA125. Finally, an interactive web-based Shiny app for the model was developed and accessible at https://rsfmodels.shinyapps.io/ocRSF/. Conclusion: An explainable ML model for PFS prediction in HGSOC patients was developed with superior results. The publicly accessible web tool based on the optimized model facilitates its utility in clinical settings, potentially improving individualized patient management and treatment decision-making in HGSOC.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
烟花应助冯xiaoni采纳,获得10
3秒前
你说的都对完成签到,获得积分10
3秒前
所所应助武雨寒采纳,获得10
5秒前
艺玲发布了新的文献求助10
6秒前
今后应助有魅力的电脑采纳,获得10
6秒前
斯文败类应助huzi采纳,获得10
6秒前
任性斑马应助impending采纳,获得10
8秒前
8秒前
9秒前
11秒前
Huimin完成签到,获得积分10
11秒前
Jasper应助ixueyi采纳,获得10
11秒前
Sandjames1889关注了科研通微信公众号
12秒前
cocolu应助疯狂的乌冬面采纳,获得10
12秒前
14秒前
15秒前
wrl2023发布了新的文献求助10
16秒前
足球发布了新的文献求助30
16秒前
16秒前
16秒前
xiaosi发布了新的文献求助10
16秒前
18秒前
19秒前
李健的小迷弟应助三三采纳,获得30
20秒前
堪明轩发布了新的文献求助10
21秒前
22秒前
Akim应助一颗桃桃采纳,获得10
23秒前
体贴雪碧完成签到,获得积分10
25秒前
wanci应助堪明轩采纳,获得10
26秒前
无花果应助十三采纳,获得10
27秒前
28秒前
彳亍完成签到 ,获得积分10
28秒前
Hello应助xiaosi采纳,获得10
30秒前
思源应助朗源Wu采纳,获得30
31秒前
33秒前
33秒前
12关注了科研通微信公众号
35秒前
科研通AI2S应助dll采纳,获得10
36秒前
38秒前
高分求助中
Востребованный временем 2500
诺贝尔奖与生命科学 2000
Les Mantodea de Guyane 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Very-high-order BVD Schemes Using β-variable THINC Method 910
Field Guide to Insects of South Africa 660
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3380575
求助须知:如何正确求助?哪些是违规求助? 2995773
关于积分的说明 8765228
捐赠科研通 2680784
什么是DOI,文献DOI怎么找? 1468195
科研通“疑难数据库(出版商)”最低求助积分说明 678885
邀请新用户注册赠送积分活动 670946