Quasi-Metric Learning for Bilateral Person-Job Fit

人工智能 计算机科学 公制(单位) 机器学习 计算机视觉 工程类 运营管理
作者
Yingpeng Du,Hongzhi Liu,Hengshu Zhu,Yang Song,Zhi Zheng,Zhonghai Wu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tpami.2025.3538774
摘要

Matching suitable jobs provided by employers with qualified candidates is a crucial task for online recruitment. Typically, candidates and employers have specific expectations in recruitment market, leading them to prefer similar jobs and candidates, respectively. Metric learning provides a promising way to capture the similarity propagation between candidates and jobs. However, existing metric learning technologies rely on symmetric distance measures, which fail to model the asymmetric relationships of bilateral users (i.e., candidates and employers) in the two-way selective process of recruitment scenarios. In addition, the behavior of users (e.g., candidates) is highly affected by the actions and feedback of their counterparts (e.g., employers). These effects can hardly be captured by the existing person-job fit methods which primarily explore homogeneous and undirected graphs. To address these problems, we propose a quasi-metric learning framework to capture the similarity propagation between candidates and jobs while modeling their asymmetric relations for bilateral person-job fit. Specifically, we propose a quasi-metric space that not only satisfies the triangle inequality rule to capture the fine-grained similarity between candidates and jobs, but also incorporates a tailored asymmetric measure to model the two-way selection process of bilateral users in online recruitment. More importantly, the proposed quasi-metric learning framework can theoretically model recruitment rules from similarity and competitiveness perspectives, making it seamlessly align with bilateral person-job fit scenarios. To explore the mutual effects of two-sided users on each other, we first organize candidates, employers, and their different-typed interactions into a heterogeneous relation graph, and then propose a relation-aware graph convolution network to capture the mutual effects of users with their bilateral behaviors. Extensive experiments on several real-world datasets demonstrate the effectiveness of the proposed quasi-metric learning framework and bilateral person-job fit model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
谨慎的荠完成签到,获得积分10
刚刚
happystarr发布了新的文献求助10
1秒前
2秒前
Elonsr应助科研通管家采纳,获得20
2秒前
无花果应助科研通管家采纳,获得10
2秒前
CipherSage应助朴实的青枫采纳,获得10
2秒前
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
yatuitui应助科研通管家采纳,获得10
2秒前
2秒前
Akim应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
Aizhy625应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得10
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
无敌是多么寂寞完成签到,获得积分10
4秒前
4秒前
研友_aLjxNZ完成签到,获得积分10
4秒前
lxl完成签到,获得积分10
4秒前
yyxx发布了新的文献求助10
5秒前
甜蜜绿蓉发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
烟花应助李某某采纳,获得10
7秒前
星星发布了新的文献求助10
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3573192
求助须知:如何正确求助?哪些是违规求助? 3143297
关于积分的说明 9451053
捐赠科研通 2844805
什么是DOI,文献DOI怎么找? 1563724
邀请新用户注册赠送积分活动 731977
科研通“疑难数据库(出版商)”最低求助积分说明 718777