亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Leveraging sentiment analysis via text mining to improve customer satisfaction in UK banks

业务 顾客满意度 情绪分析 营销 客户保留 服务质量 计算机科学 服务(商务) 人工智能
作者
Amirreza Ghadiridehkordi,Jia Shao,Dev Kumar Boojihawon,Qianxi Wang,Hui Li
出处
期刊:International Journal of Bank Marketing [Emerald (MCB UP)]
标识
DOI:10.1108/ijbm-05-2024-0323
摘要

Purpose This study examines the role of online customer reviews through text mining and sentiment analysis to improve customer satisfaction across various services within the UK banking sector. Additionally, the study analyses sentiment trends over a five-year period. Design/methodology/approach Using DistilBERT and Support Vector Machine algorithms, customer sentiments were assessed through an analysis of 20,137 Trustpilot reviews of HSBC, Santander, and Tesco Bank from 2018 to 2023. Data pre-processing steps were implemented to ensure data integrity and minimize noise. Findings Both positive and negative sentiments provide valuable insights. The results indicate a high prevalence of negative sentiments related to customer service and communication, with HSBC and Santander receiving 90.8% and 89.7% negative feedback, respectively, compared to Tesco Bank’s 66.8%. Key areas for improvement include HSBC’s credit card services and call center efficiency, which experienced increased negative feedback during the COVID-19 pandemic. The findings also demonstrate that DistilBERT excelled in categorizing reviews, while the SVM model, when combined with customer ratings, achieved 96% accuracy in sentiment analysis. Research limitations/implications This study focuses on UK bank consumers of HSBC, Santander, and Tesco Bank. A multi-country or cross-cultural study may further enhance our understanding of the approaches and findings. Practical implications Online customer reviews become more informative when categorised by service sector. To enhance customer satisfaction, bank managers should pay attention to both positive and negative reviews, and track trends over time. Originality/value The uniqueness of this study lies in its exploration of the importance of categorisation in text-mining-based sentiment analysis, its focus on the influence of both positive and negative sentiments, and its emphasis on tracking sentiment trends over time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jemery发布了新的文献求助10
刚刚
萝卜丁完成签到 ,获得积分0
3秒前
想毕业的第n天完成签到,获得积分10
22秒前
25秒前
爆米花应助烨然采纳,获得10
26秒前
28秒前
30秒前
英姑应助庾稀采纳,获得10
38秒前
orixero应助小魔笛采纳,获得10
40秒前
46秒前
复杂不二完成签到,获得积分10
1分钟前
JamesPei应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
兼听则明发布了新的文献求助100
1分钟前
1分钟前
1分钟前
思源应助堕落的大金毛采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
小魔笛发布了新的文献求助10
1分钟前
1分钟前
舒适乐安发布了新的文献求助10
1分钟前
Guinerve发布了新的文献求助10
1分钟前
Jemery发布了新的文献求助10
1分钟前
1分钟前
深海发布了新的文献求助10
1分钟前
风语村应助活泼莫英采纳,获得10
1分钟前
2分钟前
2分钟前
高金龙完成签到,获得积分10
2分钟前
2分钟前
whl发布了新的文献求助10
2分钟前
丘比特应助舒适乐安采纳,获得10
2分钟前
高金龙发布了新的文献求助10
2分钟前
风语村应助陈媛采纳,获得20
2分钟前
grewj6完成签到 ,获得积分10
2分钟前
jiangjiang完成签到 ,获得积分10
2分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
A Modified Hierarchical Risk Parity Framework for Portfolio Management 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3575037
求助须知:如何正确求助?哪些是违规求助? 3145003
关于积分的说明 9457903
捐赠科研通 2846311
什么是DOI,文献DOI怎么找? 1564755
邀请新用户注册赠送积分活动 732613
科研通“疑难数据库(出版商)”最低求助积分说明 719188