Simultaneous and Ultraspecific Optical Detection of Multiple miRNAs Using a Liquid Flow-Based Microfluidic Assay

微流控 材料科学 纳米技术 小RNA 流量(数学) 色谱法 生物 生物化学 化学 几何学 数学 基因
作者
Chan Yeol Lee,Ji Yun Jeong,H NAM,Cheol Am Hong
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
标识
DOI:10.1021/acsami.4c17191
摘要

Recent studies have reported that the cause and progression of many diseases are closely related to complex and diverse gene regulation involving multiple microRNAs (miRNAs). However, most existing methods for miRNA detection typically deal with one sample at a time, which limits the achievement of high diagnostic accuracy for diseases associated with multiple gene dysregulations. Herein, we develop a liquid flow-based microfluidic optical assay for the simple and reliable detection of two different target miRNAs simultaneously at room temperature without any enzymatic reactions. This assay utilizes the catalytic hairpin assembly cycling reaction in a mixture containing four types of hairpin DNAs to amplify two different dimeric DNA probes, each of which specifically recognizes one of the two different target miRNAs. The resultant two dimeric DNA probes effectively hybridize with anchor DNA grafted into two outlet channels of a microfluidic device, thus enabling i-motif-driven compact DNA hydrogels to form in the channels under acidic conditions. With this setup, the presence of two target miRNAs can be confirmed by the naked-eye observation of red-colored gold nanoparticles encountering a flow blockage in the two outlet channels. Notably, the developed assay demonstrates sensitive and sequence-specific detection that can precisely distinguish a single base mismatch mutant miRNA within 1.5 h. Our assay thus has the potential to serve as a powerful sensing platform for the simple and simultaneous detection of multiple miRNAs in clinical diagnostics at room temperature without analytic equipment or enzymatic reactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
上官若男应助LL12321采纳,获得10
1秒前
instant完成签到,获得积分10
1秒前
2秒前
kekejiang发布了新的文献求助10
4秒前
端庄的飞阳完成签到,获得积分10
4秒前
5秒前
牙牙发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
8秒前
晴枫3648发布了新的文献求助10
9秒前
10秒前
hsgfiw发布了新的文献求助10
11秒前
12秒前
13秒前
华华发布了新的文献求助10
13秒前
迟大猫应助catesina采纳,获得10
14秒前
驰驰发布了新的文献求助10
14秒前
14秒前
孤心完成签到 ,获得积分10
15秒前
16秒前
Alma发布了新的文献求助10
16秒前
17秒前
hhxhh发布了新的文献求助10
17秒前
18秒前
19秒前
务实的鸿煊完成签到,获得积分10
20秒前
logic22完成签到,获得积分10
21秒前
23秒前
logic22发布了新的文献求助10
24秒前
24秒前
25秒前
完美世界应助琪玛苏采纳,获得10
25秒前
火星上的菲鹰应助ddx采纳,获得10
25秒前
墨点完成签到 ,获得积分10
26秒前
快乐镜子发布了新的文献求助10
27秒前
三岁半发布了新的文献求助10
28秒前
KONG完成签到,获得积分10
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
Recent progress and new developments in post-combustion carbon-capture technology with reactive solvents 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3538560
求助须知:如何正确求助?哪些是违规求助? 3116348
关于积分的说明 9324702
捐赠科研通 2814124
什么是DOI,文献DOI怎么找? 1546485
邀请新用户注册赠送积分活动 720574
科研通“疑难数据库(出版商)”最低求助积分说明 712083