Estimation of fatty acid composition in mammary adipose tissue using deep neural network with unsupervised training

乳腺癌 脂肪酸 脂肪组织 成像体模 癌症 活检 不饱和脂肪酸 内科学 生物 化学 核医学 医学 生物化学
作者
Suneeta Chaudhary,Elizabeth G. Lane,Allison Levy,Anika L. McGrath,Eralda Mema,M. Reichmann,Katerina Dodelzon,Katherine Simon,Eileen Chang,Dominik Nickel,Linda Moy,Michele Drotman,Sungheon Kim
出处
期刊:Magnetic Resonance in Medicine [Wiley]
标识
DOI:10.1002/mrm.30401
摘要

Abstract Purpose To develop a deep learning–based method for robust and rapid estimation of the fatty acid composition (FAC) in mammary adipose tissue. Methods A physics‐based unsupervised deep learning network for estimation of fatty acid composition‐network (FAC‐Net) is proposed to estimate the number of double bonds and number of methylene‐interrupted double bonds from multi‐echo bipolar gradient‐echo data, which are subsequently converted to saturated, mono‐unsaturated, and poly‐unsaturated fatty acids. The loss function was based on a 10 fat peak signal model. The proposed network was tested with a phantom containing eight oils with different FAC and on post‐menopausal women scanned using a whole‐body 3T MRI system between February 2022 and January 2024. The post‐menopausal women included a control group ( n = 8) with average risk for breast cancer and a cancer group ( n = 7) with biopsy‐proven breast cancer. Results The FAC values of eight oils in the phantom showed strong correlations between the measured and reference values (R 2 > 0.9 except chain length). The FAC values measured from scan and rescan data of the control group showed no significant difference between the two scans. The FAC measurements of the cancer group conducted before contrast and after contrast showed a significant difference in saturated fatty acid and mono‐unsaturated fatty acid. The cancer group has higher saturated fatty acid than the control group, although not statistically significant. Conclusion The results in this study suggest that the proposed FAC‐Net can be used to measure the FAC of mammary adipose tissue from gradient‐echo MRI data of the breast.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助tx采纳,获得10
刚刚
GH完成签到,获得积分20
刚刚
1秒前
1秒前
ji完成签到,获得积分10
2秒前
陌言关注了科研通微信公众号
2秒前
3秒前
Anhan发布了新的文献求助10
3秒前
swr完成签到,获得积分10
5秒前
渌水完成签到,获得积分10
5秒前
李健应助kezhang采纳,获得10
5秒前
爆米花应助Xu采纳,获得10
6秒前
6秒前
6秒前
6秒前
大个应助wyy采纳,获得10
7秒前
烟花应助Lemon采纳,获得20
7秒前
伊凡发布了新的文献求助10
7秒前
汉堡包应助zzz采纳,获得10
8秒前
科目三应助大盘鸡猫采纳,获得10
9秒前
顺利念柏发布了新的文献求助10
9秒前
10秒前
英俊的铭应助大鸡腿采纳,获得10
11秒前
畅快的小兔子完成签到,获得积分10
11秒前
kamiliya发布了新的文献求助10
13秒前
Anhan完成签到,获得积分10
15秒前
王小明发布了新的文献求助30
15秒前
小二郎应助渌水采纳,获得10
15秒前
何十完成签到,获得积分10
16秒前
xiangdemeilo完成签到,获得积分10
16秒前
16秒前
金蕊发布了新的文献求助10
17秒前
xujy完成签到,获得积分10
18秒前
19秒前
20秒前
21秒前
21秒前
21秒前
21秒前
平常心完成签到,获得积分10
21秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3473172
求助须知:如何正确求助?哪些是违规求助? 3065938
关于积分的说明 9096250
捐赠科研通 2756945
什么是DOI,文献DOI怎么找? 1512669
邀请新用户注册赠送积分活动 699028
科研通“疑难数据库(出版商)”最低求助积分说明 698785