生物
品脱1
癌变
自噬
线粒体
细胞生物学
癌症研究
遗传学
细胞凋亡
粒体自噬
癌症
作者
Mariella Arcos,G. Roopa Lavanya,Hyeoncheol Kim,Sharina Palencia Desai,Rui Liu,Kunlun Yin,Zhaoli Liu,David Martin,Xiang Xue
标识
DOI:10.1080/15548627.2024.2425594
摘要
Mitophagy, the process by which cells eliminate damaged mitochondria, is mediated by PINK1 (PTEN induced kinase 1). Our recent research indicates that PINK1 functions as a tumor suppressor in colorectal cancer by regulating cellular metabolism. Interestingly, PINK1 ablation activated the NLRP3 (NLR family pyrin domain containing 3) inflammasome, releasing IL1B (interleukin 1 beta). However, inhibiting the NLRP3-IL1B signaling pathway with an IL1R (interleukin 1 receptor) antagonist or NLRP3 inhibitor did not hinder colon tumor growth after PINK1 loss. To identify druggable targets in PINK1-deficient tumors, ribonucleic acid sequencing analysis was performed on colon tumors from pink1 knockout and wild-type mice. Gene Set Enrichment Analysis highlighted the enrichment of iron ion transmembrane transporter activity. Subsequent qualitative polymerase chain reaction and western blot analysis revealed an increase in mitochondrial iron transporters, including mitochondrial calcium uniporter, in PINK1-deficient colon tumor cells and tissues. Live-cell iron staining demonstrated elevated cellular and mitochondrial iron levels in PINK1-deficient cells. Clinically used drugs deferiprone and minocycline reduced mitochondrial iron and superoxide levels, resulting in decreased colon tumor cell growth in vitro and in vivo. Manipulating the mitochondrial iron uptake protein MCU (mitochondrial calcium uniporter) also affected cell and xenograft tumor growth. This study suggests that therapies aimed at reducing mitochondrial iron levels may effectively inhibit colon tumor growth, particularly in patients with low PINK1 expression.
科研通智能强力驱动
Strongly Powered by AbleSci AI