Mist-edge-fog-cloud computing system for geometric and thermal error prediction and compensation of worm gear machine tools based on ONT-GCN spatial–temporal model

计算机科学 稳健性(进化) 云计算 热的 算法 实时计算 生物化学 基因 操作系统 物理 气象学 化学
作者
Hongquan Gui,Jialan Liu,Chi Ma,Mengyuan Li,Shilong Wang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:184: 109682-109682 被引量:20
标识
DOI:10.1016/j.ymssp.2022.109682
摘要

The geometric precision of worm gears (WGs) determines the service performance and life of precision machine tools, indexing turntables and other equipment. The machining accuracy of worm gear machine tools (WGMTs) is the core to guarantee the geometric precision of WGs, and is greatly affected by the thermal and geometric errors. To improve the machining accuracy of WGMTs, the thermal and geometric errors should be controlled and compensated. But the control system has a poor real-time performance, and the synchronous control of the geometric and thermal errors cannot be currently achieved, and the thermal error model has a low prediction accuracy and low robustness. To make up for the above gap, a mist-edge-fog-cloud computing system is designed for the error prediction and compensation to relieve the bandwidth pressure of the industrial Internet. Moreover, a sensor network composed of multiple sensors is constructed to obtain the thermal information, and then the ordered neuron temporal-graph convolutional network (ONT-GCN) is proposed based on the ordered neuron-long short term memory network (ON-LSTMN) and graph convolutional network (GCN) for the first time to conduct the spatial and temporal modeling of the thermal error data. The interaction among multiple sensors is explicitly considered, and the dependence of the temporal information of the thermal error data on and spatial information of sensors is taken into account. Besides, to realize the error control, the mapping relationship between the tooth surface error and geometric-thermal errors is established. The error mapping model converts 51 geometric errors and 4 thermal errors into the spatial errors of the hob. Moreover, the sensitivity of errors is analyzed, and then the key error items that affect the geometric precision of the tooth surface are identified and compensated. The results show that the ONT-GCN is superior to traditional time-series modeling methods and that the mist-edge-fog-cloud computing system can effectively shorten the executing time compared with other system frameworks, and can improve the machining accuracy of WGMTs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YANG发布了新的文献求助10
刚刚
刚刚
123发布了新的文献求助10
刚刚
sunzhiyu233发布了新的文献求助10
1秒前
Raul完成签到 ,获得积分10
1秒前
1秒前
伯尔尼圆白菜完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
2秒前
buuyoo完成签到,获得积分10
2秒前
科研通AI5应助魏煜佳采纳,获得10
2秒前
LLxiaolong完成签到,获得积分10
2秒前
3秒前
3秒前
巨噬细胞A完成签到,获得积分10
3秒前
3秒前
我要读博士完成签到 ,获得积分10
3秒前
xxq完成签到,获得积分20
3秒前
福气小姐完成签到 ,获得积分10
3秒前
搜集达人应助jjy采纳,获得10
4秒前
4秒前
郑总完成签到,获得积分10
4秒前
CipherSage应助马尼拉采纳,获得10
4秒前
SCI完成签到 ,获得积分10
5秒前
6秒前
healer发布了新的文献求助10
6秒前
123完成签到,获得积分20
7秒前
李健的小迷弟应助yili采纳,获得10
7秒前
L.完成签到,获得积分10
7秒前
木子发布了新的文献求助10
7秒前
威武诺言发布了新的文献求助10
7秒前
科研通AI5应助孙二二采纳,获得10
7秒前
7秒前
英姑应助rookie_b0采纳,获得10
8秒前
毛慢慢发布了新的文献求助10
8秒前
123完成签到,获得积分10
8秒前
kangkang完成签到,获得积分10
9秒前
丘比特应助东风第一枝采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759