Combining machine learning with radiomics features in predicting outcomes after mechanical thrombectomy in patients with acute ischemic stroke

接收机工作特性 医学 支持向量机 人工智能 无线电技术 特征选择 冲程(发动机) 机器学习 曲线下面积 逻辑回归 急性中风 放射科 内科学 计算机科学 组织纤溶酶原激活剂 工程类 药代动力学 机械工程
作者
Yan Li,Yongchang Liu,Zhen Hong,Ying Wang,Xiuling Lu
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:225: 107093-107093 被引量:11
标识
DOI:10.1016/j.cmpb.2022.107093
摘要

Some patients with mechanical thrombectomy will have a poor prognosis. This study establishes a model for predicting the prognosis after mechanical thrombectomy in acute stroke based on diffusion-weighted imaging (DWI) omics characteristics.A total of 260 stroke patients receiving mechanical thrombectomy in our hospital were randomly divided into a training set (n = 182) and a test set (n = 78) in a 7:3 ratio. The regions of interest (ROI) of the imaging features of the DWI infarct area were extracted, and the minimum absolute contraction and selection operator regression model were used to screen the best radiomics features. A support vector machine classifier established the prediction model of the prognosis after mechanical thrombectomy of acute stroke based on the selected features. The prediction efficiency of the model was evaluated by the receiver operating characteristic (ROC) curve.A total of 1936 radiomic features were extracted, and six features highly correlated with prognosis were screened after dimensionality reduction. Based on the DWI model, the ROC analysis showed that the area under the curve (AUC) for correct prediction in the training and test sets was 0.945 and 0.920, respectively.The model based on the characteristics of radiomics and machine learning has high predictive efficiency for the prognosis of acute stroke after mechanical thrombectomy, which can be used to guide personalized clinical treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萧水白应助KYRIAL采纳,获得10
2秒前
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
Singularity应助科研通管家采纳,获得10
3秒前
3秒前
栗子应助科研通管家采纳,获得20
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得30
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
hyx-dentist发布了新的文献求助10
3秒前
蚂蚁发布了新的文献求助10
6秒前
健康的代芙完成签到,获得积分10
7秒前
等待大门发布了新的文献求助10
8秒前
橙子加油发布了新的文献求助10
11秒前
传奇3应助whn采纳,获得10
12秒前
14秒前
15秒前
16秒前
萧水白应助KYRIAL采纳,获得10
16秒前
hcl完成签到,获得积分10
18秒前
李楠发布了新的文献求助10
18秒前
19秒前
genandtal完成签到,获得积分10
21秒前
万能图书馆应助笨笨往事采纳,获得10
22秒前
无奈尔曼完成签到,获得积分20
22秒前
24秒前
领导范儿应助aaa0001984采纳,获得10
24秒前
shan完成签到,获得积分10
25秒前
清爽灵萱完成签到,获得积分10
25秒前
Christina发布了新的文献求助10
25秒前
26秒前
能干的邹完成签到 ,获得积分10
27秒前
JamesPei应助hyx-dentist采纳,获得10
27秒前
MrLee2R完成签到,获得积分10
27秒前
28秒前
28秒前
萧水白应助KYRIAL采纳,获得10
29秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142187
求助须知:如何正确求助?哪些是违规求助? 2793134
关于积分的说明 7805663
捐赠科研通 2449433
什么是DOI,文献DOI怎么找? 1303289
科研通“疑难数据库(出版商)”最低求助积分说明 626807
版权声明 601291