Combining machine learning with radiomics features in predicting outcomes after mechanical thrombectomy in patients with acute ischemic stroke

接收机工作特性 医学 支持向量机 人工智能 无线电技术 特征选择 冲程(发动机) 机器学习 曲线下面积 逻辑回归 急性中风 放射科 内科学 计算机科学 组织纤溶酶原激活剂 工程类 药代动力学 机械工程
作者
Yan Li,Yongchang Liu,Zhen Hong,Ying Wang,Xiuling Lu
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:225: 107093-107093 被引量:17
标识
DOI:10.1016/j.cmpb.2022.107093
摘要

Some patients with mechanical thrombectomy will have a poor prognosis. This study establishes a model for predicting the prognosis after mechanical thrombectomy in acute stroke based on diffusion-weighted imaging (DWI) omics characteristics.A total of 260 stroke patients receiving mechanical thrombectomy in our hospital were randomly divided into a training set (n = 182) and a test set (n = 78) in a 7:3 ratio. The regions of interest (ROI) of the imaging features of the DWI infarct area were extracted, and the minimum absolute contraction and selection operator regression model were used to screen the best radiomics features. A support vector machine classifier established the prediction model of the prognosis after mechanical thrombectomy of acute stroke based on the selected features. The prediction efficiency of the model was evaluated by the receiver operating characteristic (ROC) curve.A total of 1936 radiomic features were extracted, and six features highly correlated with prognosis were screened after dimensionality reduction. Based on the DWI model, the ROC analysis showed that the area under the curve (AUC) for correct prediction in the training and test sets was 0.945 and 0.920, respectively.The model based on the characteristics of radiomics and machine learning has high predictive efficiency for the prognosis of acute stroke after mechanical thrombectomy, which can be used to guide personalized clinical treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dzjin完成签到,获得积分10
1秒前
温婉完成签到,获得积分10
2秒前
孤独的迎滑完成签到,获得积分10
2秒前
三木完成签到 ,获得积分10
3秒前
Bella完成签到,获得积分10
4秒前
523完成签到,获得积分10
4秒前
小道奇完成签到 ,获得积分10
5秒前
蔬菜土豆发布了新的文献求助10
5秒前
任笑白完成签到 ,获得积分10
6秒前
Livvia完成签到,获得积分10
6秒前
Pwrry完成签到,获得积分10
7秒前
亮仔完成签到,获得积分10
8秒前
斯文的天奇完成签到 ,获得积分10
8秒前
安详的韩庆完成签到,获得积分10
8秒前
harric完成签到,获得积分10
9秒前
123456完成签到,获得积分20
9秒前
澈千子完成签到,获得积分10
9秒前
曾建完成签到 ,获得积分10
9秒前
chen完成签到 ,获得积分10
10秒前
喜东东完成签到,获得积分10
10秒前
孤独梦曼完成签到,获得积分10
10秒前
Jasper应助慕容松采纳,获得10
11秒前
亮仔发布了新的文献求助10
12秒前
12秒前
HAL9000完成签到,获得积分10
12秒前
昵称完成签到,获得积分10
13秒前
和平发展完成签到,获得积分10
13秒前
本草石之寒温完成签到 ,获得积分10
13秒前
Lucas应助可乐采纳,获得10
14秒前
15秒前
吕布完成签到,获得积分10
15秒前
15秒前
15秒前
Owen应助yy采纳,获得10
16秒前
licheng完成签到,获得积分10
16秒前
灰太狼大王完成签到 ,获得积分10
17秒前
稳重的蜡烛完成签到,获得积分10
17秒前
Aoia完成签到,获得积分10
18秒前
星月夜完成签到,获得积分10
18秒前
哈哈完成签到,获得积分10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950021
求助须知:如何正确求助?哪些是违规求助? 3495367
关于积分的说明 11076612
捐赠科研通 3225910
什么是DOI,文献DOI怎么找? 1783346
邀请新用户注册赠送积分活动 867609
科研通“疑难数据库(出版商)”最低求助积分说明 800855