Combining machine learning with radiomics features in predicting outcomes after mechanical thrombectomy in patients with acute ischemic stroke

接收机工作特性 医学 支持向量机 人工智能 无线电技术 特征选择 冲程(发动机) 机器学习 曲线下面积 逻辑回归 急性中风 放射科 内科学 计算机科学 组织纤溶酶原激活剂 工程类 药代动力学 机械工程
作者
Yan Li,Yongchang Liu,Zhen Hong,Ying Wang,Xiuling Lu
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:225: 107093-107093 被引量:21
标识
DOI:10.1016/j.cmpb.2022.107093
摘要

Some patients with mechanical thrombectomy will have a poor prognosis. This study establishes a model for predicting the prognosis after mechanical thrombectomy in acute stroke based on diffusion-weighted imaging (DWI) omics characteristics.A total of 260 stroke patients receiving mechanical thrombectomy in our hospital were randomly divided into a training set (n = 182) and a test set (n = 78) in a 7:3 ratio. The regions of interest (ROI) of the imaging features of the DWI infarct area were extracted, and the minimum absolute contraction and selection operator regression model were used to screen the best radiomics features. A support vector machine classifier established the prediction model of the prognosis after mechanical thrombectomy of acute stroke based on the selected features. The prediction efficiency of the model was evaluated by the receiver operating characteristic (ROC) curve.A total of 1936 radiomic features were extracted, and six features highly correlated with prognosis were screened after dimensionality reduction. Based on the DWI model, the ROC analysis showed that the area under the curve (AUC) for correct prediction in the training and test sets was 0.945 and 0.920, respectively.The model based on the characteristics of radiomics and machine learning has high predictive efficiency for the prognosis of acute stroke after mechanical thrombectomy, which can be used to guide personalized clinical treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助可靠的寒风采纳,获得10
刚刚
清冷沁入拂晨完成签到,获得积分10
刚刚
2秒前
2秒前
浅笑百一完成签到,获得积分10
3秒前
张环发布了新的文献求助10
3秒前
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
4秒前
热舞特完成签到,获得积分10
5秒前
8秒前
777发布了新的文献求助10
8秒前
方妙竹发布了新的文献求助10
8秒前
姜姜发布了新的文献求助10
9秒前
9秒前
sincyking完成签到,获得积分10
9秒前
思源应助令水白采纳,获得10
9秒前
Hello应助开心子骞采纳,获得10
9秒前
rwewe发布了新的文献求助10
9秒前
JayChou完成签到,获得积分10
11秒前
11秒前
研友_wZr5Rn发布了新的文献求助10
12秒前
乐乐应助seven采纳,获得10
13秒前
13秒前
852应助WYN采纳,获得10
13秒前
科研通AI6应助effervescence采纳,获得10
13秒前
小南发布了新的文献求助10
14秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
Mryuan完成签到,获得积分10
16秒前
rwewe完成签到,获得积分10
16秒前
16秒前
16秒前
科研通AI6应助Salt_fish采纳,获得10
17秒前
17秒前
ftinscience完成签到,获得积分10
17秒前
18秒前
Lumos完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660323
求助须知:如何正确求助?哪些是违规求助? 4833206
关于积分的说明 15090227
捐赠科研通 4818974
什么是DOI,文献DOI怎么找? 2578909
邀请新用户注册赠送积分活动 1533480
关于科研通互助平台的介绍 1492243