Combining machine learning with radiomics features in predicting outcomes after mechanical thrombectomy in patients with acute ischemic stroke

接收机工作特性 医学 支持向量机 人工智能 无线电技术 特征选择 冲程(发动机) 机器学习 曲线下面积 逻辑回归 急性中风 放射科 内科学 计算机科学 组织纤溶酶原激活剂 工程类 药代动力学 机械工程
作者
Yan Li,Yongchang Liu,Zhen Hong,Ying Wang,Xiuling Lu
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:225: 107093-107093 被引量:11
标识
DOI:10.1016/j.cmpb.2022.107093
摘要

Some patients with mechanical thrombectomy will have a poor prognosis. This study establishes a model for predicting the prognosis after mechanical thrombectomy in acute stroke based on diffusion-weighted imaging (DWI) omics characteristics.A total of 260 stroke patients receiving mechanical thrombectomy in our hospital were randomly divided into a training set (n = 182) and a test set (n = 78) in a 7:3 ratio. The regions of interest (ROI) of the imaging features of the DWI infarct area were extracted, and the minimum absolute contraction and selection operator regression model were used to screen the best radiomics features. A support vector machine classifier established the prediction model of the prognosis after mechanical thrombectomy of acute stroke based on the selected features. The prediction efficiency of the model was evaluated by the receiver operating characteristic (ROC) curve.A total of 1936 radiomic features were extracted, and six features highly correlated with prognosis were screened after dimensionality reduction. Based on the DWI model, the ROC analysis showed that the area under the curve (AUC) for correct prediction in the training and test sets was 0.945 and 0.920, respectively.The model based on the characteristics of radiomics and machine learning has high predictive efficiency for the prognosis of acute stroke after mechanical thrombectomy, which can be used to guide personalized clinical treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉静天思完成签到,获得积分10
3秒前
cappuccino完成签到,获得积分10
4秒前
科研通AI5应助1021采纳,获得10
4秒前
沉静天思发布了新的文献求助10
5秒前
5秒前
晴枫3648发布了新的文献求助10
7秒前
10秒前
张张完成签到 ,获得积分10
11秒前
12秒前
12秒前
文艺乐驹发布了新的文献求助60
12秒前
1021发布了新的文献求助10
16秒前
Guan发布了新的文献求助10
16秒前
16秒前
wanci应助zhoushixian采纳,获得10
16秒前
CaoBoyue完成签到,获得积分10
19秒前
20秒前
大模型应助Joker采纳,获得10
23秒前
24秒前
CodeCraft应助细心的冬灵采纳,获得10
24秒前
TianY天翊发布了新的文献求助10
25秒前
传奇3应助自觉的小蝴蝶采纳,获得10
25秒前
26秒前
乐观的眼睛完成签到,获得积分10
28秒前
共享精神应助愤怒的卓越采纳,获得10
28秒前
29秒前
Keylor发布了新的文献求助10
32秒前
33秒前
晴枫3648完成签到,获得积分10
34秒前
科研通AI5应助李迅迅采纳,获得10
35秒前
wiwin发布了新的文献求助10
36秒前
自由伊完成签到,获得积分10
36秒前
唐妮发布了新的文献求助10
38秒前
38秒前
39秒前
Yiy完成签到 ,获得积分10
40秒前
李健应助wiwin采纳,获得10
41秒前
sterne发布了新的文献求助10
44秒前
46秒前
zyppor完成签到,获得积分10
47秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3669949
求助须知:如何正确求助?哪些是违规求助? 3227345
关于积分的说明 9775203
捐赠科研通 2937487
什么是DOI,文献DOI怎么找? 1609371
邀请新用户注册赠送积分活动 760295
科研通“疑难数据库(出版商)”最低求助积分说明 735772