亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting Mirna-Disease Associations Based on Neighbor Selection Graph Attention Networks

特征选择 小RNA 相似性(几何) 图形 计算机科学 疾病 人工智能 计算生物学 数据挖掘 机器学习 医学 基因 生物 理论计算机科学 遗传学 病理 图像(数学)
作者
Huan Zhao,Zhengwei Li,Zhu‐Hong You,Ru Nie,Tangbo Zhong
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (2): 1298-1307 被引量:11
标识
DOI:10.1109/tcbb.2022.3204726
摘要

Numerous experiments have shown that the occurrence of complex human diseases is often accompanied by abnormal expression of microRNA (miRNA). Identifying the associations between miRNAs and diseases is of great significance in the development of clinical medicine. However, traditional experimental methods are often time-consuming and inefficient. To this end, we proposed a deep learning method based on neighbor selection graph attention networks for predicting miRNA-disease associations (NSAMDA). Specifically, we firstly fused miRNA sequence similarity information and miRNA integrated similarity information to enrich miRNA feature information. Secondly, we used the fused miRNA feature information and disease integrated similarity information to construct a miRNA-disease heterogeneous graph. Thirdly, we introduced a neighbor selection method based on graph attention networks to select k -most important neighbors for aggregation. Finally, we used the inner product decoder to score miRNA-disease pairs. The results of five-fold cross-validation show that the mean AUC of NSAMDA is 93.69% on HMDD v2.0 dataset. In addition, case studies on the esophageal neoplasm, lung neoplasm and lymphoma were carried out to further confirm the effectiveness of the NSAMDA model. The results showed that the NSAMDA method achieves satisfactory performance on predicting miRNA-disease associations and is superior to the most advanced model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Tales完成签到 ,获得积分10
28秒前
lawang完成签到,获得积分10
30秒前
1分钟前
娟子完成签到,获得积分10
1分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
3分钟前
畅快代柔完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
酷波er应助科研通管家采纳,获得10
4分钟前
等待的小蚂蚁完成签到,获得积分20
4分钟前
5分钟前
5分钟前
zhangyiyang完成签到,获得积分10
5分钟前
哲别发布了新的文献求助10
5分钟前
5分钟前
自觉凌蝶完成签到 ,获得积分10
5分钟前
6分钟前
6分钟前
6分钟前
7分钟前
Tameiki发布了新的文献求助10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
7分钟前
7分钟前
kkk完成签到,获得积分10
7分钟前
wanci应助科研通管家采纳,获得10
8分钟前
8分钟前
9分钟前
daiyu发布了新的文献求助10
9分钟前
yang发布了新的文献求助10
10分钟前
zhangjianzeng完成签到 ,获得积分10
10分钟前
脑洞疼应助daiyu采纳,获得10
10分钟前
10分钟前
科研通AI2S应助科研通管家采纳,获得10
10分钟前
Willow完成签到,获得积分10
10分钟前
paradox完成签到 ,获得积分10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658113
求助须知:如何正确求助?哪些是违规求助? 4817003
关于积分的说明 15080857
捐赠科研通 4816417
什么是DOI,文献DOI怎么找? 2577345
邀请新用户注册赠送积分活动 1532342
关于科研通互助平台的介绍 1490952