踩
有限元法
工程类
结构工程
天然橡胶
材料科学
复合材料
作者
Heron J. Dionisio,Anderson Muniz Calhabeu
标识
DOI:10.2346/tire.22.21023
摘要
ABSTRACT The tire industry still spends a considerable amount of resources on indoor and outdoor tests during the product development stage. Virtual tests provide conditions to complete this step faster, saving both money and time. Considering that life span and mileage are important issues, especially for truck tire consumers, virtual wear analyses provide valuable information that helps engineers to improve their products. This study aims to exemplify a way to predict tread band wear using the finite element method approach and Archard’s wear theory. In addition, it shows the importance of following the vehicle maintenance program as it has an impact on how long the set of tires will last. Tread wear simulation is implemented through user subroutine and adaptive meshing technique, whereas friction energy is calculated using a steady-state analysis at selected working conditions. Data collected from outdoor experiments provide the necessary information to check and validate the analysis. The impact of the lack of appropriate vehicle maintenance on tire wear is evaluated by changing some boundary conditions of the model such as load, inner pressure, and camber and toe angles. The simulation results show good agreement with the information found in the literature.
科研通智能强力驱动
Strongly Powered by AbleSci AI