Explainable machine learning models for probabilistic buckling stress prediction of steel shear panel dampers

结构工程 屈曲 阻尼器 有限元法 拉丁超立方体抽样 人工神经网络 概率逻辑 工程类 消散 剪切(地质) 材料科学 计算机科学 数学 复合材料 人工智能 蒙特卡罗方法 物理 统计 热力学
作者
Shuling Hu,Wei Wang,Yongchang Lu
出处
期刊:Engineering Structures [Elsevier]
卷期号:288: 116235-116235 被引量:7
标识
DOI:10.1016/j.engstruct.2023.116235
摘要

Steel shear panel dampers are widely used as passive energy-dissipation devices in earthquake-resistant structures. The out-of-plane buckling stress of the core plate included in the steel shear panel damper is critical for obtaining the desired lateral force-resistant and hysteretic energy-absorbing capacities. However, the existing calculation method of buckling stress of the steel shear panel damper cannot well address the effects of the steel material’s and geometries’ inherent uncertainties. This paper intends to develop the probabilistic buckling stress prediction models of steel shear panel dampers using machine learning methods considering the steel material’s and geometries’ uncertainties. To this end, the nominal buckling stress prediction models are first developed using different machine learning algorithms based on finite element analysis results where the efficiency of the finite element models has been validated through test results. The analysis results confirm the highest accuracy of the artificial neural network (ANN) model. The SHapley Additive exPlanations (SHAP) and feature importance analysis methods are adopted for interpreting the developed prediction models. The analysis results indicate that the yielding stress of steel (fy), the height-to-width ratio (α), the width-to-thickness ratio (β), and the initial imperfection (δ) show significant influences on the nominal buckling stress of the steel panel damper while the thickness of the core plate (t) shows negligible effects. The probabilistic buckling stress prediction models are further developed based on the trained ANN model considering the combined uncertainties of steel materials and geometries by the Latin hypercube sampling method. The efficiency of the developed probabilistic buckling stress prediction models is confirmed by capturing the probability density of the numerical simulation results. The global sensitivity analysis (GSA) method is introduced for investigating the influence of the design parameters on the discreteness of the probabilistic buckling stress. It has been found from the analysis results that the uncertainties of the yielding stress of steel (fy) and the initial imperfection (δ) have significant influence, that of the height-to-width ratio (α) have limited influence, and that of the width-to-thickness ratio (β) and the thickness of the core plate (t) have negligible influence on the buckling stress of the steel panel damper. For practical application, the interactive software named “PBSSD” is developed and provided for predicting the probabilistic buckling stress by inputting the nominal design parameters of steel material and geometries.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zz完成签到,获得积分10
2秒前
时尚白晴完成签到 ,获得积分10
2秒前
AL发布了新的文献求助10
3秒前
3秒前
ZML314完成签到,获得积分10
4秒前
乔木发布了新的文献求助10
4秒前
haha完成签到,获得积分10
5秒前
6秒前
现代的花生完成签到,获得积分10
6秒前
科研通AI6.1应助hy123123采纳,获得30
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
紧张的眼睛完成签到 ,获得积分10
8秒前
任驰骋完成签到,获得积分10
9秒前
有故无陨完成签到,获得积分10
9秒前
9秒前
AL完成签到,获得积分10
10秒前
清爽的人龙完成签到 ,获得积分10
10秒前
10秒前
11秒前
薏晓完成签到 ,获得积分10
11秒前
12秒前
馨达子发布了新的文献求助10
13秒前
13秒前
Jiayee发布了新的文献求助20
13秒前
darkside发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
15秒前
魔幻颜发布了新的文献求助10
17秒前
cindy发布了新的文献求助10
17秒前
17秒前
天天向上完成签到 ,获得积分10
18秒前
激昂的吐司完成签到,获得积分10
19秒前
馨达子完成签到,获得积分10
21秒前
Eileen发布了新的文献求助30
22秒前
有脾气的番茄完成签到,获得积分10
22秒前
22秒前
王好完成签到 ,获得积分10
22秒前
23秒前
23秒前
Jasper应助polymer采纳,获得10
23秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5749652
求助须知:如何正确求助?哪些是违规求助? 5460000
关于积分的说明 15364278
捐赠科研通 4889098
什么是DOI,文献DOI怎么找? 2628929
邀请新用户注册赠送积分活动 1577176
关于科研通互助平台的介绍 1533851