亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Investigation on aortic hemodynamics based on physics-informed neural network

压力梯度 机械 主动脉弓 数学 数学分析 物理 主动脉 外科 医学
作者
Meiyuan Du,Chi Zhang,Shane Xie,Fangling Pu,Da Zhang,Deyu Li
出处
期刊:Mathematical Biosciences and Engineering [American Institute of Mathematical Sciences]
卷期号:20 (7): 11545-11567 被引量:6
标识
DOI:10.3934/mbe.2023512
摘要

Pressure in arteries is difficult to measure non-invasively. Although computational fluid dynamics (CFD) provides high-precision numerical solutions according to the basic physical equations of fluid mechanics, it relies on precise boundary conditions and complex preprocessing, which limits its real-time application. Machine learning algorithms have wide applications in hemodynamic research due to their powerful learning ability and fast calculation speed. Therefore, we proposed a novel method for pressure estimation based on physics-informed neural network (PINN). An ideal aortic arch model was established according to the geometric parameters from human aorta, and we performed CFD simulation with two-way fluid-solid coupling. The simulation results, including the space-time coordinates, the velocity and pressure field, were obtained as the dataset for the training and validation of PINN. Nondimensional Navier-Stokes equations and continuity equation were employed for the loss function of PINN, to calculate the velocity and relative pressure field. Post-processing was proposed to fit the absolute pressure of the aorta according to the linear relationship between relative pressure, elastic modulus and displacement of the vessel wall. Additionally, we explored the sensitivity of the PINN to the vascular elasticity, blood viscosity and blood velocity. The velocity and pressure field predicted by PINN yielded good consistency with the simulated values. In the interested region of the aorta, the relative errors of maximum and average absolute pressure were 7.33% and 5.71%, respectively. The relative pressure field was found most sensitive to blood velocity, followed by blood viscosity and vascular elasticity. This study has proposed a method for intra-vascular pressure estimation, which has potential significance in the diagnosis of cardiovascular diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
止戈完成签到 ,获得积分10
10秒前
肆肆完成签到,获得积分10
1分钟前
liuyuannzhuo完成签到,获得积分20
1分钟前
3分钟前
3分钟前
JLHN发布了新的文献求助20
3分钟前
lbl完成签到,获得积分10
4分钟前
JLHN完成签到,获得积分10
4分钟前
科目三三次郎完成签到 ,获得积分10
5分钟前
Puan完成签到,获得积分10
6分钟前
9分钟前
zsmj23完成签到 ,获得积分0
9分钟前
zhaozhao完成签到 ,获得积分10
11分钟前
冷傲渊思完成签到,获得积分10
11分钟前
谢小盟完成签到 ,获得积分10
11分钟前
11分钟前
上官若男应助安之若素采纳,获得10
12分钟前
Perry完成签到,获得积分10
12分钟前
咕咕咕咕发布了新的文献求助30
12分钟前
咕咕咕咕完成签到,获得积分10
12分钟前
安之若素完成签到,获得积分20
12分钟前
12分钟前
安之若素发布了新的文献求助10
13分钟前
14分钟前
gszy1975发布了新的文献求助10
14分钟前
大喜子完成签到 ,获得积分10
16分钟前
科研通AI2S应助欣喜若灵采纳,获得10
16分钟前
16分钟前
欣喜若灵发布了新的文献求助10
17分钟前
赘婿应助krajicek采纳,获得30
17分钟前
18分钟前
Mayer1234088发布了新的文献求助10
18分钟前
18分钟前
krajicek发布了新的文献求助30
18分钟前
19分钟前
liufinity发布了新的文献求助10
19分钟前
柿饼完成签到,获得积分10
19分钟前
英俊的铭应助liufinity采纳,获得10
19分钟前
19分钟前
krajicek发布了新的文献求助10
19分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154982
求助须知:如何正确求助?哪些是违规求助? 2805698
关于积分的说明 7865848
捐赠科研通 2463950
什么是DOI,文献DOI怎么找? 1311678
科研通“疑难数据库(出版商)”最低求助积分说明 629728
版权声明 601853