Reinforcement learning based adaptive PID controller design for control of linear/nonlinear unstable processes

PID控制器 控制理论(社会学) 强化学习 非线性系统 计算机科学 控制器(灌溉) 控制工程 自适应控制 控制(管理) 人工智能 温度控制 工程类 物理 农学 量子力学 生物
作者
T. Shuprajhaa,Shivakanth Sujit,K. Srinivasan
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:128: 109450-109450 被引量:47
标识
DOI:10.1016/j.asoc.2022.109450
摘要

Control of unstable process is challenging owing to its dynamic nature, output multiplicities and stability issues. This research work focuses to develop a generic data driven modified Proximal Policy Optimization (m-PPO) reinforcement learning based adaptive PID controller (RL-PID) for the control of open loop unstable processes. The RL agent acting as the supervisor explores and identifies optimal gains for the PID controller to ensure desired servo and regulatory performance. Adaptive modifications in terms of inclusion of action repeat, modified reward function and early stopping criterion are incorporated to the m-PPO algorithm to handle the unbounded output nature of unstable processes. Effect of m-PPO algorithm is proven in terms of reward earned by the RL agent. Servo and regulatory performance of the proposed RL-PID controller is compared with that of classical PID controller, Deep Discriminant Policy Gradient based PID controller and Advantage Actor Critic based PID controller on various linear, non linear, multivariable unstable systems including unstable jacketed CSTR process and Unmanned Aerial Vehicle in simulation environment. Validation of the proposed controller is also done in real time level control process station, a laboratory level experimental test rig. It is observed that the proposed RL-PID performs satisfactorily better than the other controllers in both qualitative and quantitative metrics. The striking feature of this control scheme is that it eliminates the need of process modeling and pre-requisite knowledge on process dynamics and controller tuning. The proposed controller is a data driven generic approach that can be directly applied to any industrial process. • Model free data driven controller is proposed for unstable systems. • Reinforcement learning-Proportional Integral Derivative controller is proposed. • Modified Proximal Policy Optimization is employed for optimal tuning of controller. • Early stopping, action repeat and modified reward are used in optimization process. • Validation is done with linear and complex nonlinear unstable systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Sailzyf完成签到,获得积分10
刚刚
抓恐龙发布了新的文献求助10
刚刚
刚刚
汉堡包应助言小采纳,获得10
1秒前
Chen发布了新的文献求助10
1秒前
lql233完成签到,获得积分20
1秒前
雪白问兰完成签到 ,获得积分10
1秒前
1秒前
魅力蜗牛完成签到,获得积分10
1秒前
1秒前
upup小李完成签到 ,获得积分10
2秒前
手帕很忙完成签到,获得积分10
2秒前
害羞含雁发布了新的文献求助10
2秒前
2秒前
zp完成签到 ,获得积分10
2秒前
ren发布了新的文献求助10
3秒前
Lucas应助踏实的小海豚采纳,获得10
3秒前
Lucas应助2go采纳,获得10
3秒前
Jasper应助日月山河永在采纳,获得10
4秒前
4秒前
5秒前
5秒前
慕青应助没有名称采纳,获得10
5秒前
HEIKU应助聪慧的机器猫采纳,获得10
5秒前
拼搏翠桃发布了新的文献求助10
6秒前
8个老登发布了新的文献求助10
7秒前
7秒前
hhy完成签到,获得积分10
7秒前
孙一雯发布了新的文献求助30
8秒前
8秒前
Xxxnnian完成签到,获得积分20
9秒前
fancy发布了新的文献求助10
9秒前
apple完成签到,获得积分10
9秒前
9秒前
oldlee发布了新的文献求助10
10秒前
斜杠武发布了新的文献求助10
10秒前
毕业就好发布了新的文献求助10
10秒前
wusanlinshi完成签到,获得积分20
11秒前
娜行发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672