亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Reinforcement learning based adaptive PID controller design for control of linear/nonlinear unstable processes

PID控制器 控制理论(社会学) 强化学习 非线性系统 计算机科学 控制器(灌溉) 控制工程 自适应控制 控制(管理) 人工智能 温度控制 工程类 物理 农学 量子力学 生物
作者
T. Shuprajhaa,Shivakanth Sujit,K. Srinivasan
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:128: 109450-109450 被引量:60
标识
DOI:10.1016/j.asoc.2022.109450
摘要

Control of unstable process is challenging owing to its dynamic nature, output multiplicities and stability issues. This research work focuses to develop a generic data driven modified Proximal Policy Optimization (m-PPO) reinforcement learning based adaptive PID controller (RL-PID) for the control of open loop unstable processes. The RL agent acting as the supervisor explores and identifies optimal gains for the PID controller to ensure desired servo and regulatory performance. Adaptive modifications in terms of inclusion of action repeat, modified reward function and early stopping criterion are incorporated to the m-PPO algorithm to handle the unbounded output nature of unstable processes. Effect of m-PPO algorithm is proven in terms of reward earned by the RL agent. Servo and regulatory performance of the proposed RL-PID controller is compared with that of classical PID controller, Deep Discriminant Policy Gradient based PID controller and Advantage Actor Critic based PID controller on various linear, non linear, multivariable unstable systems including unstable jacketed CSTR process and Unmanned Aerial Vehicle in simulation environment. Validation of the proposed controller is also done in real time level control process station, a laboratory level experimental test rig. It is observed that the proposed RL-PID performs satisfactorily better than the other controllers in both qualitative and quantitative metrics. The striking feature of this control scheme is that it eliminates the need of process modeling and pre-requisite knowledge on process dynamics and controller tuning. The proposed controller is a data driven generic approach that can be directly applied to any industrial process. • Model free data driven controller is proposed for unstable systems. • Reinforcement learning-Proportional Integral Derivative controller is proposed. • Modified Proximal Policy Optimization is employed for optimal tuning of controller. • Early stopping, action repeat and modified reward are used in optimization process. • Validation is done with linear and complex nonlinear unstable systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
矮小的猕猴桃完成签到,获得积分10
5秒前
8秒前
11秒前
斯文的梦松完成签到,获得积分20
21秒前
29秒前
慕青应助斯文的梦松采纳,获得10
41秒前
52秒前
1分钟前
1分钟前
1分钟前
victorchen完成签到,获得积分10
1分钟前
victorchen发布了新的文献求助10
1分钟前
漂亮天真完成签到,获得积分10
1分钟前
大胆的渊思完成签到,获得积分10
1分钟前
1分钟前
田様应助shinexxg采纳,获得10
1分钟前
所所应助王大壮采纳,获得50
1分钟前
1分钟前
1分钟前
HYQ完成签到 ,获得积分10
1分钟前
思源应助吱吱熊sama采纳,获得10
1分钟前
美满尔蓝完成签到,获得积分10
2分钟前
kbcbwb2002完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
shinexxg发布了新的文献求助10
2分钟前
kk发布了新的文献求助10
2分钟前
2分钟前
烟花应助大树爱树懒采纳,获得10
2分钟前
2分钟前
Lewis发布了新的文献求助10
2分钟前
2分钟前
科研通AI6应助kk采纳,获得10
2分钟前
馆长举报YANG求助涉嫌违规
2分钟前
2分钟前
2分钟前
忧郁天玉发布了新的文献求助10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4983422
求助须知:如何正确求助?哪些是违规求助? 4234732
关于积分的说明 13189338
捐赠科研通 4026968
什么是DOI,文献DOI怎么找? 2202966
邀请新用户注册赠送积分活动 1215243
关于科研通互助平台的介绍 1132201