Reinforcement learning based adaptive PID controller design for control of linear/nonlinear unstable processes

PID控制器 控制理论(社会学) 强化学习 非线性系统 计算机科学 控制器(灌溉) 控制工程 自适应控制 控制(管理) 人工智能 温度控制 工程类 物理 农学 量子力学 生物
作者
T. Shuprajhaa,Shivakanth Sujit,K. Srinivasan
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:128: 109450-109450 被引量:60
标识
DOI:10.1016/j.asoc.2022.109450
摘要

Control of unstable process is challenging owing to its dynamic nature, output multiplicities and stability issues. This research work focuses to develop a generic data driven modified Proximal Policy Optimization (m-PPO) reinforcement learning based adaptive PID controller (RL-PID) for the control of open loop unstable processes. The RL agent acting as the supervisor explores and identifies optimal gains for the PID controller to ensure desired servo and regulatory performance. Adaptive modifications in terms of inclusion of action repeat, modified reward function and early stopping criterion are incorporated to the m-PPO algorithm to handle the unbounded output nature of unstable processes. Effect of m-PPO algorithm is proven in terms of reward earned by the RL agent. Servo and regulatory performance of the proposed RL-PID controller is compared with that of classical PID controller, Deep Discriminant Policy Gradient based PID controller and Advantage Actor Critic based PID controller on various linear, non linear, multivariable unstable systems including unstable jacketed CSTR process and Unmanned Aerial Vehicle in simulation environment. Validation of the proposed controller is also done in real time level control process station, a laboratory level experimental test rig. It is observed that the proposed RL-PID performs satisfactorily better than the other controllers in both qualitative and quantitative metrics. The striking feature of this control scheme is that it eliminates the need of process modeling and pre-requisite knowledge on process dynamics and controller tuning. The proposed controller is a data driven generic approach that can be directly applied to any industrial process. • Model free data driven controller is proposed for unstable systems. • Reinforcement learning-Proportional Integral Derivative controller is proposed. • Modified Proximal Policy Optimization is employed for optimal tuning of controller. • Early stopping, action repeat and modified reward are used in optimization process. • Validation is done with linear and complex nonlinear unstable systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
英俊的铭应助季末默相依采纳,获得10
1秒前
1秒前
内向幻翠完成签到 ,获得积分10
1秒前
顾矜应助wj18637196763采纳,获得10
2秒前
2秒前
斯文败类应助无无采纳,获得10
2秒前
2秒前
科目三应助11采纳,获得10
3秒前
3秒前
6秒前
6秒前
up325发布了新的文献求助10
7秒前
吗喽的家发布了新的文献求助10
7秒前
8秒前
8秒前
lcj1014发布了新的文献求助10
8秒前
Robin发布了新的文献求助10
8秒前
小马甲应助显灵鸡屎果采纳,获得10
9秒前
11发布了新的文献求助10
11秒前
思源应助重要的扬采纳,获得30
12秒前
τ涛发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
贤者12332应助迷人绮彤采纳,获得10
14秒前
ghhhn完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
科研通AI6.1应助一个西瓜采纳,获得10
16秒前
17秒前
17秒前
18秒前
550482956谢完成签到,获得积分10
18秒前
风卷残云完成签到,获得积分20
19秒前
嗯嗯发布了新的文献求助10
19秒前
suyihui应助小牛采纳,获得10
19秒前
冷艳紫南完成签到,获得积分10
20秒前
汉堡包应助Robin采纳,获得10
21秒前
jiangjiang发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5778513
求助须知:如何正确求助?哪些是违规求助? 5641999
关于积分的说明 15449665
捐赠科研通 4910179
什么是DOI,文献DOI怎么找? 2642469
邀请新用户注册赠送积分活动 1590270
关于科研通互助平台的介绍 1544599