Reinforcement learning based adaptive PID controller design for control of linear/nonlinear unstable processes

PID控制器 控制理论(社会学) 强化学习 非线性系统 计算机科学 控制器(灌溉) 控制工程 自适应控制 控制(管理) 人工智能 温度控制 工程类 物理 农学 量子力学 生物
作者
T. Shuprajhaa,Shivakanth Sujit,K. Srinivasan
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:128: 109450-109450 被引量:47
标识
DOI:10.1016/j.asoc.2022.109450
摘要

Control of unstable process is challenging owing to its dynamic nature, output multiplicities and stability issues. This research work focuses to develop a generic data driven modified Proximal Policy Optimization (m-PPO) reinforcement learning based adaptive PID controller (RL-PID) for the control of open loop unstable processes. The RL agent acting as the supervisor explores and identifies optimal gains for the PID controller to ensure desired servo and regulatory performance. Adaptive modifications in terms of inclusion of action repeat, modified reward function and early stopping criterion are incorporated to the m-PPO algorithm to handle the unbounded output nature of unstable processes. Effect of m-PPO algorithm is proven in terms of reward earned by the RL agent. Servo and regulatory performance of the proposed RL-PID controller is compared with that of classical PID controller, Deep Discriminant Policy Gradient based PID controller and Advantage Actor Critic based PID controller on various linear, non linear, multivariable unstable systems including unstable jacketed CSTR process and Unmanned Aerial Vehicle in simulation environment. Validation of the proposed controller is also done in real time level control process station, a laboratory level experimental test rig. It is observed that the proposed RL-PID performs satisfactorily better than the other controllers in both qualitative and quantitative metrics. The striking feature of this control scheme is that it eliminates the need of process modeling and pre-requisite knowledge on process dynamics and controller tuning. The proposed controller is a data driven generic approach that can be directly applied to any industrial process. • Model free data driven controller is proposed for unstable systems. • Reinforcement learning-Proportional Integral Derivative controller is proposed. • Modified Proximal Policy Optimization is employed for optimal tuning of controller. • Early stopping, action repeat and modified reward are used in optimization process. • Validation is done with linear and complex nonlinear unstable systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助不扯先生采纳,获得10
刚刚
8R60d8应助科研通管家采纳,获得10
刚刚
刚刚
小马甲应助科研通管家采纳,获得10
刚刚
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
sunshine应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
爱静静应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
陈陈完成签到,获得积分10
2秒前
欢呼忆丹发布了新的文献求助10
2秒前
3秒前
神说要有光完成签到,获得积分10
3秒前
Jasper应助SWD采纳,获得10
4秒前
tly发布了新的文献求助30
4秒前
TWO宝发布了新的文献求助10
5秒前
wenjingluo完成签到 ,获得积分10
5秒前
Jan.发布了新的文献求助10
6秒前
Li发布了新的文献求助10
8秒前
TWD发布了新的文献求助10
9秒前
Vincent完成签到,获得积分10
11秒前
11秒前
andrele发布了新的文献求助10
11秒前
内向秋寒完成签到,获得积分10
13秒前
13秒前
英俊的铭应助sunzhuxi采纳,获得10
14秒前
14秒前
我是老大应助WH采纳,获得10
15秒前
月流瓦完成签到,获得积分10
16秒前
不扯先生发布了新的文献求助10
16秒前
16秒前
Jan.完成签到,获得积分20
18秒前
20秒前
Zz发布了新的文献求助10
20秒前
双黄应助忐忑的静槐采纳,获得10
21秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3261058
求助须知:如何正确求助?哪些是违规求助? 2901992
关于积分的说明 8318508
捐赠科研通 2571708
什么是DOI,文献DOI怎么找? 1397242
科研通“疑难数据库(出版商)”最低求助积分说明 653684
邀请新用户注册赠送积分活动 632216