Reinforcement learning based adaptive PID controller design for control of linear/nonlinear unstable processes

PID控制器 控制理论(社会学) 强化学习 非线性系统 计算机科学 控制器(灌溉) 控制工程 自适应控制 控制(管理) 人工智能 温度控制 工程类 物理 农学 量子力学 生物
作者
T. Shuprajhaa,Shivakanth Sujit,K. Srinivasan
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:128: 109450-109450 被引量:60
标识
DOI:10.1016/j.asoc.2022.109450
摘要

Control of unstable process is challenging owing to its dynamic nature, output multiplicities and stability issues. This research work focuses to develop a generic data driven modified Proximal Policy Optimization (m-PPO) reinforcement learning based adaptive PID controller (RL-PID) for the control of open loop unstable processes. The RL agent acting as the supervisor explores and identifies optimal gains for the PID controller to ensure desired servo and regulatory performance. Adaptive modifications in terms of inclusion of action repeat, modified reward function and early stopping criterion are incorporated to the m-PPO algorithm to handle the unbounded output nature of unstable processes. Effect of m-PPO algorithm is proven in terms of reward earned by the RL agent. Servo and regulatory performance of the proposed RL-PID controller is compared with that of classical PID controller, Deep Discriminant Policy Gradient based PID controller and Advantage Actor Critic based PID controller on various linear, non linear, multivariable unstable systems including unstable jacketed CSTR process and Unmanned Aerial Vehicle in simulation environment. Validation of the proposed controller is also done in real time level control process station, a laboratory level experimental test rig. It is observed that the proposed RL-PID performs satisfactorily better than the other controllers in both qualitative and quantitative metrics. The striking feature of this control scheme is that it eliminates the need of process modeling and pre-requisite knowledge on process dynamics and controller tuning. The proposed controller is a data driven generic approach that can be directly applied to any industrial process. • Model free data driven controller is proposed for unstable systems. • Reinforcement learning-Proportional Integral Derivative controller is proposed. • Modified Proximal Policy Optimization is employed for optimal tuning of controller. • Early stopping, action repeat and modified reward are used in optimization process. • Validation is done with linear and complex nonlinear unstable systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助moonpie采纳,获得10
1秒前
1秒前
顺利毕业完成签到,获得积分10
2秒前
殷一丹完成签到 ,获得积分10
3秒前
4秒前
li完成签到,获得积分10
5秒前
6秒前
gmugyy完成签到,获得积分10
6秒前
6秒前
6秒前
ky发布了新的文献求助10
8秒前
8秒前
紫菱发布了新的文献求助10
11秒前
12秒前
孤独士晋完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
leslie应助不想采纳,获得10
16秒前
Xia完成签到,获得积分10
17秒前
月亮邮递员应助归海亦云采纳,获得30
20秒前
20秒前
ky完成签到,获得积分10
20秒前
20秒前
111发布了新的文献求助30
21秒前
ryze完成签到,获得积分10
21秒前
21秒前
21秒前
大气映冬发布了新的文献求助10
23秒前
高高完成签到,获得积分10
23秒前
郑凯翔完成签到,获得积分10
24秒前
科研通AI6应助否定之否定采纳,获得10
25秒前
26秒前
27秒前
27秒前
27秒前
27秒前
超级幼旋应助优秀的耳机采纳,获得10
27秒前
求篇文章完成签到,获得积分10
27秒前
27秒前
烟花应助哈哈哈采纳,获得10
28秒前
壮观的灵凡完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594094
求助须知:如何正确求助?哪些是违规求助? 4679802
关于积分的说明 14811596
捐赠科研通 4645803
什么是DOI,文献DOI怎么找? 2534749
邀请新用户注册赠送积分活动 1502769
关于科研通互助平台的介绍 1469452