A systematic review on the use of artificial intelligence in gynecologic imaging – Background, state of the art, and future directions

医学 梅德林 系统回顾 模式 人工智能 乳房成像 医学物理学 乳腺摄影术 计算机科学 内科学 乳腺癌 政治学 社会科学 癌症 社会学 法学
作者
Pallabi Shrestha,Bhavya Poudyal,Sepideh Yadollahi,Darryl Wright,Adriana Gregory,Joshua Warner,Panagiotis Korfiatis,Isabel C. Green,Sarah L. Cohen Rassier,Andrea Mariani,Chan Kyo Kim,Shannon K. Laughlin-Tommaso,Timothy L. Kline
出处
期刊:Gynecologic Oncology [Elsevier]
卷期号:166 (3): 596-605 被引量:38
标识
DOI:10.1016/j.ygyno.2022.07.024
摘要

Abstract

Objective

Machine learning, deep learning, and artificial intelligence (AI) are terms that have made their way into nearly all areas of medicine. In the case of medical imaging, these methods have become the state of the art in nearly all areas from image reconstruction to image processing and automated analysis. In contrast to other areas, such as brain and breast imaging, the impacts of AI have not been as strongly felt in gynecologic imaging. In this review article, we: (i) provide a background of clinically relevant AI concepts, (ii) describe methods and approaches in computer vision, and (iii) highlight prior work related to image classification tasks utilizing AI approaches in gynecologic imaging.

Data sources

A comprehensive search of several databases from each database's inception to March 18th, 2021, English language, was conducted. The databases included Ovid MEDLINE(R) and Epub Ahead of Print, In-Process & Other Non-Indexed Citations, and Daily, Ovid EMBASE, Ovid Cochrane Central Register of Controlled Trials, and Ovid Cochrane Database of Systematic Reviews and ClinicalTrials.gov.

Methods of study selection

We performed an extensive literature review with 61 articles curated by three reviewers and subsequent sorting by specialists using specific inclusion and exclusion criteria.

Tabulation, integration, and results

We summarize the literature grouped by each of the three most common gynecologic malignancies: endometrial, cervical, and ovarian. For each, a brief introduction encapsulating the AI methods, imaging modalities, and clinical parameters in the selected articles is presented. We conclude with a discussion of current developments, trends and limitations, and suggest directions for future study.

Conclusion

This review article should prove useful for collaborative teams performing research studies targeted at the incorporation of radiological imaging and AI methods into gynecological clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
罗预言本罗完成签到,获得积分10
1秒前
科研通AI2S应助稚气满满采纳,获得10
1秒前
材料虎发布了新的文献求助10
2秒前
自信向梦完成签到,获得积分10
3秒前
4秒前
汐甜发布了新的文献求助10
4秒前
大个应助coco采纳,获得10
5秒前
misha991应助自我鱼采纳,获得20
5秒前
5秒前
Cassie完成签到,获得积分10
5秒前
韩一发布了新的文献求助10
5秒前
V3发布了新的文献求助30
6秒前
1234发布了新的文献求助10
6秒前
今后应助佳丽采纳,获得10
6秒前
寻道图强应助研友_8KX15L采纳,获得30
6秒前
Arthur Zhu完成签到,获得积分10
8秒前
Unknown完成签到,获得积分10
9秒前
慕青应助茹茹采纳,获得10
9秒前
ssyhlth完成签到,获得积分10
9秒前
快乐灵安发布了新的文献求助10
10秒前
li应助叶子姑凉采纳,获得10
12秒前
英姑应助季生采纳,获得10
12秒前
orixero应助秋高气爽采纳,获得10
12秒前
chenyh应助自信的眉毛采纳,获得10
12秒前
我啊完成签到,获得积分10
13秒前
Ava应助yaoyao264采纳,获得10
13秒前
14秒前
斯文败类应助漂亮翅膀采纳,获得10
15秒前
16秒前
Unknown发布了新的文献求助10
16秒前
17秒前
17秒前
十三畵完成签到,获得积分10
17秒前
yxq完成签到 ,获得积分10
18秒前
八块腹肌完成签到 ,获得积分10
19秒前
19秒前
Akim应助liyali采纳,获得10
21秒前
茹茹发布了新的文献求助10
21秒前
高分求助中
Lire en communiste 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168924
求助须知:如何正确求助?哪些是违规求助? 2820169
关于积分的说明 7929567
捐赠科研通 2480239
什么是DOI,文献DOI怎么找? 1321290
科研通“疑难数据库(出版商)”最低求助积分说明 633152
版权声明 602497