重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Entity Relation Aware Graph Neural Ranking for Biomedical Information Retrieval

计算机科学 情报检索 关系抽取 知识库 知识图 语义匹配 杠杆(统计) 实体链接 知识抽取 图形 信息抽取 人工智能 匹配(统计) 理论计算机科学 统计 数学
作者
Yichen He,Xiaofeng Liu,Jinlong Hu,Shoubin Dong
标识
DOI:10.1109/bibm58861.2023.10385584
摘要

The performance of biomedical information retrieval greatly depends on biomedical knowledge; however the knowledge of available medical knowledge base is often incomplete and out-of-dated. To solve the problem that incomplete knowledge bases cannot provide the medical knowledge required for biomedical information retrieval, the paper proposes an Entity Relation Aware Graph Neural Ranking model (ERAGNR), aiming to fully leverage the internal knowledge of the document to alleviate the problem caused by incomplete external knowledge bases. ERAGNR mines the relationships between biomedical entities in the document through entity relation extraction and combines them with external knowledge. It increases the semantic association and reduces the semantic gap between the query and the document. The method first constructs a knowledge-query graph and a document-entity graph, and then fuses the two graphs to obtain a knowledge-query-document-entity graph. In a multi-task learning framework that combines text retrieval and relation extraction tasks, ERAGNR employs a shared text encoder and a graph neural network. This enables ERAGNR to learn semantic matching patterns between queries and documents and recognize relationships between entities in the documents. As a result, the model can capture semantic matching signals between entity relationships in the context and queries. The experimental results show that ERAGNR outperforms the state-of-the-art models. Through biomedical relation extraction task, the model can learn the ability to capture the context of the entity relations in the document, so that the model can more accurately match the semantics between the query and the document.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
阿尔治发布了新的文献求助10
1秒前
Lucky发布了新的文献求助10
1秒前
洁净的亦竹完成签到 ,获得积分10
1秒前
2秒前
宋浩奇完成签到 ,获得积分10
3秒前
浮游应助hxz采纳,获得50
3秒前
3秒前
毅毅子发布了新的文献求助10
4秒前
泰山球迷发布了新的文献求助10
4秒前
Wn发布了新的文献求助200
4秒前
CR7完成签到,获得积分0
5秒前
airtermis发布了新的文献求助10
5秒前
善学以致用应助缓慢冷风采纳,获得10
5秒前
w2完成签到,获得积分10
5秒前
Jolin完成签到,获得积分10
5秒前
lsn发布了新的文献求助10
6秒前
6秒前
123发布了新的文献求助30
6秒前
6秒前
糊涂的中恶完成签到,获得积分10
6秒前
哭泣的金鱼完成签到,获得积分10
6秒前
wangyamei发布了新的文献求助10
7秒前
7秒前
传奇3应助Ruhe采纳,获得10
7秒前
隐形曼青应助追1采纳,获得10
7秒前
7秒前
充电宝应助Gaojin锦采纳,获得10
7秒前
7秒前
8秒前
陈好完成签到,获得积分10
9秒前
anlifei发布了新的文献求助10
9秒前
9秒前
温酽发布了新的文献求助10
10秒前
飞翔的霸天哥应助穆穆穆采纳,获得30
11秒前
zhuchenglu发布了新的文献求助10
11秒前
寡核苷酸小白完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
于建国完成签到,获得积分10
12秒前
坚定的依琴完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466870
求助须知:如何正确求助?哪些是违规求助? 4570586
关于积分的说明 14326244
捐赠科研通 4497151
什么是DOI,文献DOI怎么找? 2463752
邀请新用户注册赠送积分活动 1452682
关于科研通互助平台的介绍 1427605