Entity Relation Aware Graph Neural Ranking for Biomedical Information Retrieval

计算机科学 情报检索 关系抽取 知识库 知识图 语义匹配 杠杆(统计) 实体链接 知识抽取 图形 信息抽取 人工智能 匹配(统计) 理论计算机科学 统计 数学
作者
Yichen He,Xiaofeng Liu,Jinlong Hu,Shoubin Dong
标识
DOI:10.1109/bibm58861.2023.10385584
摘要

The performance of biomedical information retrieval greatly depends on biomedical knowledge; however the knowledge of available medical knowledge base is often incomplete and out-of-dated. To solve the problem that incomplete knowledge bases cannot provide the medical knowledge required for biomedical information retrieval, the paper proposes an Entity Relation Aware Graph Neural Ranking model (ERAGNR), aiming to fully leverage the internal knowledge of the document to alleviate the problem caused by incomplete external knowledge bases. ERAGNR mines the relationships between biomedical entities in the document through entity relation extraction and combines them with external knowledge. It increases the semantic association and reduces the semantic gap between the query and the document. The method first constructs a knowledge-query graph and a document-entity graph, and then fuses the two graphs to obtain a knowledge-query-document-entity graph. In a multi-task learning framework that combines text retrieval and relation extraction tasks, ERAGNR employs a shared text encoder and a graph neural network. This enables ERAGNR to learn semantic matching patterns between queries and documents and recognize relationships between entities in the documents. As a result, the model can capture semantic matching signals between entity relationships in the context and queries. The experimental results show that ERAGNR outperforms the state-of-the-art models. Through biomedical relation extraction task, the model can learn the ability to capture the context of the entity relations in the document, so that the model can more accurately match the semantics between the query and the document.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咿咿呀呀发布了新的文献求助10
1秒前
1秒前
才是自由发布了新的文献求助10
1秒前
英俊的铭应助将看看采纳,获得10
1秒前
乐乐应助小药师采纳,获得10
1秒前
slugger完成签到,获得积分20
1秒前
SciGPT应助1234采纳,获得10
2秒前
在水一方应助滴滴滴采纳,获得10
2秒前
wanci应助想吃芝士焗饭采纳,获得30
2秒前
3秒前
肘子完成签到,获得积分20
5秒前
McbxM发布了新的文献求助10
5秒前
含蓄清炎发布了新的文献求助10
6秒前
TangLin完成签到,获得积分10
6秒前
7秒前
7秒前
谜记完成签到 ,获得积分10
7秒前
slugger发布了新的文献求助10
7秒前
7秒前
7秒前
源味怪豆完成签到,获得积分10
7秒前
卡卡卡完成签到,获得积分10
8秒前
phil完成签到,获得积分10
8秒前
今后应助哈哈镜采纳,获得10
8秒前
10秒前
10秒前
Chunxue发布了新的文献求助10
11秒前
11秒前
服部平次完成签到,获得积分10
12秒前
1234完成签到,获得积分10
12秒前
12秒前
张广雪发布了新的文献求助30
12秒前
12秒前
月亮上的猫完成签到,获得积分10
12秒前
田様应助滴滴滴采纳,获得10
12秒前
SDW完成签到,获得积分10
12秒前
情怀应助满意若烟采纳,获得10
13秒前
TIMF14完成签到,获得积分10
13秒前
652183758发布了新的文献求助50
13秒前
13秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123270
求助须知:如何正确求助?哪些是违规求助? 2773756
关于积分的说明 7719288
捐赠科研通 2429428
什么是DOI,文献DOI怎么找? 1290306
科研通“疑难数据库(出版商)”最低求助积分说明 621803
版权声明 600251