Entity Relation Aware Graph Neural Ranking for Biomedical Information Retrieval

计算机科学 情报检索 关系抽取 知识库 知识图 语义匹配 杠杆(统计) 实体链接 知识抽取 图形 信息抽取 人工智能 匹配(统计) 理论计算机科学 统计 数学
作者
Yichen He,Xiaofeng Liu,Jinlong Hu,Shoubin Dong
标识
DOI:10.1109/bibm58861.2023.10385584
摘要

The performance of biomedical information retrieval greatly depends on biomedical knowledge; however the knowledge of available medical knowledge base is often incomplete and out-of-dated. To solve the problem that incomplete knowledge bases cannot provide the medical knowledge required for biomedical information retrieval, the paper proposes an Entity Relation Aware Graph Neural Ranking model (ERAGNR), aiming to fully leverage the internal knowledge of the document to alleviate the problem caused by incomplete external knowledge bases. ERAGNR mines the relationships between biomedical entities in the document through entity relation extraction and combines them with external knowledge. It increases the semantic association and reduces the semantic gap between the query and the document. The method first constructs a knowledge-query graph and a document-entity graph, and then fuses the two graphs to obtain a knowledge-query-document-entity graph. In a multi-task learning framework that combines text retrieval and relation extraction tasks, ERAGNR employs a shared text encoder and a graph neural network. This enables ERAGNR to learn semantic matching patterns between queries and documents and recognize relationships between entities in the documents. As a result, the model can capture semantic matching signals between entity relationships in the context and queries. The experimental results show that ERAGNR outperforms the state-of-the-art models. Through biomedical relation extraction task, the model can learn the ability to capture the context of the entity relations in the document, so that the model can more accurately match the semantics between the query and the document.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
汉堡包应助一颗橘子洲头采纳,获得10
1秒前
azmj发布了新的文献求助10
1秒前
潺潺流水完成签到,获得积分10
2秒前
张zz发布了新的文献求助10
3秒前
3秒前
3秒前
好名字完成签到,获得积分10
4秒前
眼睛大的书易完成签到,获得积分10
4秒前
烦恼大海发布了新的文献求助10
4秒前
lmy完成签到,获得积分10
4秒前
岘屿完成签到 ,获得积分10
4秒前
5秒前
5秒前
5秒前
晴qq发布了新的文献求助10
6秒前
6秒前
墨月发布了新的文献求助10
7秒前
费1发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
9秒前
斯文败类应助xzh采纳,获得10
9秒前
10秒前
好名字发布了新的文献求助10
10秒前
墙雨轩完成签到 ,获得积分10
11秒前
研友_VZG7GZ应助QYPANG采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
能干巨人应助科研通管家采纳,获得10
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
科目三应助科研通管家采纳,获得10
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
轨迹应助科研通管家采纳,获得20
12秒前
斯文败类应助科研通管家采纳,获得200
12秒前
12秒前
上官若男应助科研通管家采纳,获得10
12秒前
南瓜发布了新的文献求助10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
隐形曼青应助科研通管家采纳,获得10
12秒前
Eatanicecube完成签到,获得积分10
12秒前
12秒前
Lucas应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711679
求助须知:如何正确求助?哪些是违规求助? 5205113
关于积分的说明 15264986
捐赠科研通 4863917
什么是DOI,文献DOI怎么找? 2611005
邀请新用户注册赠送积分活动 1561363
关于科研通互助平台的介绍 1518685