Entity Relation Aware Graph Neural Ranking for Biomedical Information Retrieval

计算机科学 情报检索 关系抽取 知识库 知识图 语义匹配 杠杆(统计) 实体链接 知识抽取 图形 信息抽取 人工智能 匹配(统计) 理论计算机科学 统计 数学
作者
Yichen He,Xiaofeng Liu,Jinlong Hu,Shoubin Dong
标识
DOI:10.1109/bibm58861.2023.10385584
摘要

The performance of biomedical information retrieval greatly depends on biomedical knowledge; however the knowledge of available medical knowledge base is often incomplete and out-of-dated. To solve the problem that incomplete knowledge bases cannot provide the medical knowledge required for biomedical information retrieval, the paper proposes an Entity Relation Aware Graph Neural Ranking model (ERAGNR), aiming to fully leverage the internal knowledge of the document to alleviate the problem caused by incomplete external knowledge bases. ERAGNR mines the relationships between biomedical entities in the document through entity relation extraction and combines them with external knowledge. It increases the semantic association and reduces the semantic gap between the query and the document. The method first constructs a knowledge-query graph and a document-entity graph, and then fuses the two graphs to obtain a knowledge-query-document-entity graph. In a multi-task learning framework that combines text retrieval and relation extraction tasks, ERAGNR employs a shared text encoder and a graph neural network. This enables ERAGNR to learn semantic matching patterns between queries and documents and recognize relationships between entities in the documents. As a result, the model can capture semantic matching signals between entity relationships in the context and queries. The experimental results show that ERAGNR outperforms the state-of-the-art models. Through biomedical relation extraction task, the model can learn the ability to capture the context of the entity relations in the document, so that the model can more accurately match the semantics between the query and the document.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fei应助琳琳采纳,获得50
1秒前
非而者厚发布了新的文献求助10
1秒前
非而者厚发布了新的文献求助10
1秒前
非而者厚发布了新的文献求助10
1秒前
非而者厚发布了新的文献求助10
1秒前
非而者厚发布了新的文献求助10
1秒前
非而者厚发布了新的文献求助10
1秒前
非而者厚发布了新的文献求助10
1秒前
1秒前
非而者厚发布了新的文献求助10
1秒前
非而者厚发布了新的文献求助10
1秒前
非而者厚发布了新的文献求助10
1秒前
非而者厚发布了新的文献求助10
1秒前
非而者厚发布了新的文献求助10
1秒前
非而者厚发布了新的文献求助10
1秒前
非而者厚发布了新的文献求助10
1秒前
非而者厚发布了新的文献求助10
1秒前
非而者厚发布了新的文献求助10
1秒前
非而者厚发布了新的文献求助10
1秒前
lk发布了新的文献求助10
1秒前
2秒前
科目三应助薄灯男孩采纳,获得10
2秒前
amazinggrace完成签到,获得积分10
2秒前
科研通AI6应助柴脱采纳,获得10
3秒前
3秒前
Gaojinyun发布了新的文献求助10
4秒前
6秒前
hanli发布了新的文献求助10
6秒前
know完成签到,获得积分10
6秒前
7秒前
7秒前
qq糖发布了新的文献求助10
7秒前
香香香完成签到,获得积分10
7秒前
顺心凡之完成签到,获得积分10
7秒前
8秒前
乐观小蕊发布了新的文献求助10
8秒前
9秒前
无花果应助lucinda采纳,获得10
9秒前
coco完成签到,获得积分10
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620874
求助须知:如何正确求助?哪些是违规求助? 4705521
关于积分的说明 14932362
捐赠科研通 4763666
什么是DOI,文献DOI怎么找? 2551356
邀请新用户注册赠送积分活动 1513817
关于科研通互助平台的介绍 1474715