Entity Relation Aware Graph Neural Ranking for Biomedical Information Retrieval

计算机科学 情报检索 关系抽取 知识库 知识图 语义匹配 杠杆(统计) 实体链接 知识抽取 图形 信息抽取 人工智能 匹配(统计) 理论计算机科学 数学 统计
作者
Yichen He,Xiaofeng Liu,Jinlong Hu,Shoubin Dong
标识
DOI:10.1109/bibm58861.2023.10385584
摘要

The performance of biomedical information retrieval greatly depends on biomedical knowledge; however the knowledge of available medical knowledge base is often incomplete and out-of-dated. To solve the problem that incomplete knowledge bases cannot provide the medical knowledge required for biomedical information retrieval, the paper proposes an Entity Relation Aware Graph Neural Ranking model (ERAGNR), aiming to fully leverage the internal knowledge of the document to alleviate the problem caused by incomplete external knowledge bases. ERAGNR mines the relationships between biomedical entities in the document through entity relation extraction and combines them with external knowledge. It increases the semantic association and reduces the semantic gap between the query and the document. The method first constructs a knowledge-query graph and a document-entity graph, and then fuses the two graphs to obtain a knowledge-query-document-entity graph. In a multi-task learning framework that combines text retrieval and relation extraction tasks, ERAGNR employs a shared text encoder and a graph neural network. This enables ERAGNR to learn semantic matching patterns between queries and documents and recognize relationships between entities in the documents. As a result, the model can capture semantic matching signals between entity relationships in the context and queries. The experimental results show that ERAGNR outperforms the state-of-the-art models. Through biomedical relation extraction task, the model can learn the ability to capture the context of the entity relations in the document, so that the model can more accurately match the semantics between the query and the document.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
小马奔奔发布了新的文献求助10
2秒前
2秒前
DD应助maliyang采纳,获得10
3秒前
3秒前
3秒前
4秒前
Pidan完成签到,获得积分10
4秒前
baibai完成签到,获得积分10
4秒前
wanci应助呵呵呵采纳,获得10
4秒前
Myu111111完成签到,获得积分10
4秒前
西门访曼发布了新的文献求助10
5秒前
5秒前
ZWK发布了新的文献求助10
5秒前
在水一方应助feifei采纳,获得10
6秒前
星辰大海应助无限妙梦采纳,获得10
7秒前
ZHQ发布了新的文献求助10
7秒前
TAboo发布了新的文献求助10
7秒前
7秒前
Myu111111发布了新的文献求助10
7秒前
乐乐应助优雅泡芙采纳,获得20
8秒前
ZORA完成签到,获得积分10
8秒前
孙行者发布了新的文献求助10
9秒前
田様应助如意的小丸子采纳,获得10
9秒前
xianglily发布了新的文献求助30
9秒前
羊羊羊发布了新的文献求助10
9秒前
祁乐天完成签到,获得积分10
9秒前
1256完成签到,获得积分10
10秒前
自由新竹发布了新的文献求助10
11秒前
Wang完成签到,获得积分10
12秒前
12秒前
传奇3应助月亮采纳,获得10
13秒前
13秒前
13秒前
13秒前
13秒前
领导范儿应助Alex采纳,获得10
14秒前
斯文败类应助久久采纳,获得10
14秒前
14秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978596
求助须知:如何正确求助?哪些是违规求助? 3522689
关于积分的说明 11214402
捐赠科研通 3260158
什么是DOI,文献DOI怎么找? 1799770
邀请新用户注册赠送积分活动 878659
科研通“疑难数据库(出版商)”最低求助积分说明 807033