Whole-tumor histogram models based on quantitative maps from synthetic MRI for predicting axillary lymph node status in invasive ductal breast cancer

医学 乳腺癌 直方图 接收机工作特性 淋巴结 逻辑回归 乳房磁振造影 核医学 放射科 癌症 内科学 人工智能 乳腺摄影术 计算机科学 图像(数学)
作者
Fang Zeng,Zheting Yang,Xiaoxue Tang,Lin Lin,Hailong Lin,Yue Wu,Zongmeng Wang,Minyan Chen,Lili Chen,Lihong Chen,Pu‐Yeh Wu,Chuang Wang,Yunjing Xue
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:172: 111325-111325 被引量:2
标识
DOI:10.1016/j.ejrad.2024.111325
摘要

Abstract

Purpose

To investigate the potential of using histogram analysis of synthetic MRI (SyMRI) images before and after contrast enhancement to predict axillary lymph node (ALN) status in patients with invasive ductal carcinoma (IDC).

Methods

From January 2022 to October 2022, a total of 212 patients with IDC underwent breast MRI examination including SyMRI. Standard T2 weight images, DCE-MRI and quantitative maps of SyMRI were obtained. 13 features of the entire tumor were extracted from these quantitative maps, standard T2 weight images and DCE-MRI. Statistical analyses, including Student's t-test, Mann-Whiney U test, logistic regression, and receiver operating characteristic (ROC) curves, were used to evaluate the data. The mean values of SyMRI quantitative parameters derived from the conventional 2D region of interest (ROI) were also evaluated.

Results

The combined model based on T1-Gd quantitative map (energy, minimum, and variance) and clinical features (age and multifocality) achieved the best diagnostic performance in the prediction of ALN between N0 (with non-metastatic ALN) and N+ group (metastatic ALN ≥ 1) with the AUC of 0.879. Among individual quantitative maps and standard sequence-derived models, the synthetic T1-Gd model showed the best performance for the prediction of ALN between N0 and N+ groups (AUC = 0.823). Synthetic T2_entropy and PD-Gd_energy were useful for distinguishing N1 group (metastatic ALN ≥ 1 and ≤ 3) from the N2-3 group (metastatic ALN > 3) with an AUC of 0.722.

Conclusions

Whole-tumor histogram features derived from quantitative parameters of SyMRI can serve as a complementary noninvasive method for preoperatively predicting ALN metastases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿玖完成签到 ,获得积分10
2秒前
布同完成签到,获得积分10
2秒前
堀江真夏完成签到 ,获得积分10
3秒前
Pauline完成签到 ,获得积分10
4秒前
能干戎完成签到,获得积分10
4秒前
悦耳怜南完成签到,获得积分10
4秒前
小丑鱼儿完成签到 ,获得积分10
5秒前
唐Doctor发布了新的文献求助10
6秒前
molly雨轩完成签到,获得积分10
6秒前
王明阳完成签到 ,获得积分10
6秒前
gcl完成签到,获得积分10
8秒前
Hzml完成签到 ,获得积分10
10秒前
妖精完成签到 ,获得积分10
11秒前
11秒前
12秒前
江哥完成签到,获得积分10
12秒前
mengmenglv完成签到 ,获得积分0
12秒前
xdc完成签到,获得积分20
12秒前
13秒前
Zo完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
15秒前
明亮的小懒虫完成签到 ,获得积分10
15秒前
xdc发布了新的文献求助10
16秒前
wl完成签到,获得积分20
16秒前
gf完成签到 ,获得积分10
16秒前
英姑应助唐Doctor采纳,获得10
17秒前
17秒前
18秒前
19秒前
肯德基没有黄焖鸡完成签到 ,获得积分10
20秒前
好困发布了新的文献求助10
20秒前
CosnEdge完成签到,获得积分10
20秒前
思苇完成签到,获得积分10
21秒前
999完成签到,获得积分10
23秒前
不会游泳的鱼完成签到,获得积分10
24秒前
25秒前
Dr_Han完成签到,获得积分10
26秒前
奋斗往事完成签到 ,获得积分10
26秒前
丁圣元完成签到,获得积分10
26秒前
心信鑫完成签到 ,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482706
求助须知:如何正确求助?哪些是违规求助? 4583446
关于积分的说明 14389578
捐赠科研通 4512683
什么是DOI,文献DOI怎么找? 2473180
邀请新用户注册赠送积分活动 1459251
关于科研通互助平台的介绍 1432861