Whole-tumor histogram models based on quantitative maps from synthetic MRI for predicting axillary lymph node status in invasive ductal breast cancer

医学 乳腺癌 直方图 接收机工作特性 淋巴结 逻辑回归 乳房磁振造影 核医学 放射科 癌症 内科学 人工智能 乳腺摄影术 计算机科学 图像(数学)
作者
Fang Zeng,Zheting Yang,Xiaoxue Tang,Lin Lin,Hailong Lin,Yue Wu,Zongmeng Wang,Minyan Chen,Lili Chen,Lihong Chen,Pu‐Yeh Wu,Chuang Wang,Yunjing Xue
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:172: 111325-111325 被引量:2
标识
DOI:10.1016/j.ejrad.2024.111325
摘要

Abstract

Purpose

To investigate the potential of using histogram analysis of synthetic MRI (SyMRI) images before and after contrast enhancement to predict axillary lymph node (ALN) status in patients with invasive ductal carcinoma (IDC).

Methods

From January 2022 to October 2022, a total of 212 patients with IDC underwent breast MRI examination including SyMRI. Standard T2 weight images, DCE-MRI and quantitative maps of SyMRI were obtained. 13 features of the entire tumor were extracted from these quantitative maps, standard T2 weight images and DCE-MRI. Statistical analyses, including Student's t-test, Mann-Whiney U test, logistic regression, and receiver operating characteristic (ROC) curves, were used to evaluate the data. The mean values of SyMRI quantitative parameters derived from the conventional 2D region of interest (ROI) were also evaluated.

Results

The combined model based on T1-Gd quantitative map (energy, minimum, and variance) and clinical features (age and multifocality) achieved the best diagnostic performance in the prediction of ALN between N0 (with non-metastatic ALN) and N+ group (metastatic ALN ≥ 1) with the AUC of 0.879. Among individual quantitative maps and standard sequence-derived models, the synthetic T1-Gd model showed the best performance for the prediction of ALN between N0 and N+ groups (AUC = 0.823). Synthetic T2_entropy and PD-Gd_energy were useful for distinguishing N1 group (metastatic ALN ≥ 1 and ≤ 3) from the N2-3 group (metastatic ALN > 3) with an AUC of 0.722.

Conclusions

Whole-tumor histogram features derived from quantitative parameters of SyMRI can serve as a complementary noninvasive method for preoperatively predicting ALN metastases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
诚心的梅发布了新的文献求助10
刚刚
1秒前
Orange应助orange9采纳,获得10
1秒前
啦啦啦啦啦完成签到,获得积分10
2秒前
天侠客完成签到,获得积分10
4秒前
Hey发布了新的文献求助10
4秒前
我是老大应助Tim采纳,获得10
5秒前
JJ完成签到,获得积分10
5秒前
王哈哈发布了新的文献求助10
6秒前
酷波er应助NGU采纳,获得10
6秒前
6秒前
6秒前
打打应助lvsehx采纳,获得10
7秒前
科研破忒头完成签到,获得积分10
8秒前
8秒前
李健的小迷弟应助梓棋采纳,获得10
9秒前
wanci应助咸鱼不翻身采纳,获得10
9秒前
隐形曼青应助smile采纳,获得10
10秒前
李爱国应助如意秋珊采纳,获得10
10秒前
Lee完成签到,获得积分10
11秒前
14秒前
531完成签到,获得积分10
15秒前
15秒前
17秒前
17秒前
xixi完成签到,获得积分10
18秒前
18秒前
发发发完成签到 ,获得积分10
18秒前
帅帅子完成签到,获得积分10
18秒前
18秒前
19秒前
江小白发布了新的文献求助10
19秒前
20秒前
机械师简发布了新的文献求助20
20秒前
21秒前
危机的河马完成签到,获得积分10
21秒前
21秒前
王哈哈完成签到,获得积分20
21秒前
NGU发布了新的文献求助10
22秒前
仁爱雪晴发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5297298
求助须知:如何正确求助?哪些是违规求助? 4446207
关于积分的说明 13838799
捐赠科研通 4331371
什么是DOI,文献DOI怎么找? 2377578
邀请新用户注册赠送积分活动 1372834
关于科研通互助平台的介绍 1338403