Whole-tumor histogram models based on quantitative maps from synthetic MRI for predicting axillary lymph node status in invasive ductal breast cancer

医学 乳腺癌 直方图 接收机工作特性 淋巴结 逻辑回归 乳房磁振造影 核医学 放射科 癌症 内科学 人工智能 乳腺摄影术 计算机科学 图像(数学)
作者
Fang Zeng,Zheting Yang,Xiaoxue Tang,Lin Lin,Hailong Lin,Yue Wu,Zongmeng Wang,Minyan Chen,Lili Chen,Lihong Chen,Pu‐Yeh Wu,Chuang Wang,Yunjing Xue
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:172: 111325-111325
标识
DOI:10.1016/j.ejrad.2024.111325
摘要

Abstract

Purpose

To investigate the potential of using histogram analysis of synthetic MRI (SyMRI) images before and after contrast enhancement to predict axillary lymph node (ALN) status in patients with invasive ductal carcinoma (IDC).

Methods

From January 2022 to October 2022, a total of 212 patients with IDC underwent breast MRI examination including SyMRI. Standard T2 weight images, DCE-MRI and quantitative maps of SyMRI were obtained. 13 features of the entire tumor were extracted from these quantitative maps, standard T2 weight images and DCE-MRI. Statistical analyses, including Student's t-test, Mann-Whiney U test, logistic regression, and receiver operating characteristic (ROC) curves, were used to evaluate the data. The mean values of SyMRI quantitative parameters derived from the conventional 2D region of interest (ROI) were also evaluated.

Results

The combined model based on T1-Gd quantitative map (energy, minimum, and variance) and clinical features (age and multifocality) achieved the best diagnostic performance in the prediction of ALN between N0 (with non-metastatic ALN) and N+ group (metastatic ALN ≥ 1) with the AUC of 0.879. Among individual quantitative maps and standard sequence-derived models, the synthetic T1-Gd model showed the best performance for the prediction of ALN between N0 and N+ groups (AUC = 0.823). Synthetic T2_entropy and PD-Gd_energy were useful for distinguishing N1 group (metastatic ALN ≥ 1 and ≤ 3) from the N2-3 group (metastatic ALN > 3) with an AUC of 0.722.

Conclusions

Whole-tumor histogram features derived from quantitative parameters of SyMRI can serve as a complementary noninvasive method for preoperatively predicting ALN metastases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zbblp1发布了新的文献求助50
1秒前
调研昵称发布了新的文献求助10
1秒前
科研通AI2S应助lyjwghh采纳,获得30
1秒前
科研通AI2S应助Michael采纳,获得10
2秒前
城北徐公发布了新的文献求助20
6秒前
6秒前
ff发布了新的文献求助10
9秒前
辣辣发布了新的文献求助10
10秒前
11秒前
李11111完成签到 ,获得积分10
11秒前
Agamemnon完成签到,获得积分10
13秒前
15秒前
小二郎应助自信夜蓉采纳,获得10
15秒前
mini的yr完成签到 ,获得积分10
15秒前
优秀的小豆芽完成签到,获得积分10
15秒前
大模型应助科研通管家采纳,获得10
16秒前
水牛应助科研通管家采纳,获得20
16秒前
英俊的铭应助科研通管家采纳,获得10
16秒前
赘婿应助科研通管家采纳,获得10
17秒前
斯文败类应助科研通管家采纳,获得10
17秒前
回到原点应助科研通管家采纳,获得10
17秒前
ding应助科研通管家采纳,获得10
17秒前
今后应助科研通管家采纳,获得10
17秒前
19秒前
19秒前
认真的白开水完成签到,获得积分10
23秒前
24秒前
究极美少女进化完成签到,获得积分10
26秒前
27秒前
28秒前
文艺的雨寒完成签到 ,获得积分10
28秒前
tingtingzhang完成签到 ,获得积分10
32秒前
卓诗云发布了新的文献求助10
33秒前
33秒前
852应助12345采纳,获得10
37秒前
LMM完成签到,获得积分10
38秒前
科研通AI2S应助海潮采纳,获得10
38秒前
liqian完成签到,获得积分10
39秒前
42秒前
43秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157519
求助须知:如何正确求助?哪些是违规求助? 2808900
关于积分的说明 7878979
捐赠科研通 2467322
什么是DOI,文献DOI怎么找? 1313355
科研通“疑难数据库(出版商)”最低求助积分说明 630395
版权声明 601919