MR‐based electrical property tomography using a physics‐informed network at 3 and 7 T

亥姆霍兹自由能 一致性(知识库) 财产(哲学) 断层摄影术 介电常数 软件 均方误差 含水量 算法 生物医学工程 物理 计算机科学 人工智能 医学 数学 电介质 哲学 统计 认识论 光学 光电子学 岩土工程 量子力学 程序设计语言 工程类
作者
Mengxuan Zheng,Feiyang Lou,Yiman Huang,Sihong Pan,Xiaotong Zhang
出处
期刊:NMR in Biomedicine [Wiley]
卷期号:37 (8)
标识
DOI:10.1002/nbm.5137
摘要

Magnetic resonance electrical propert tomography promises to retrieve electrical properties (EPs) quantitatively and non‐invasively in vivo, providing valuable information for tissue characterization and pathology diagnosis. However, its clinical implementation has been hindered by, for example, B 1 measurement accuracy, reconstruction artifacts resulting from inaccuracies in underlying models, and stringent hardware/software requirements. To address these challenges, we present a novel approach aimed at accurate and high‐resolution EPs reconstruction based on water content maps by using a physics‐informed network (PIN‐wEPT). The proposed method utilizes standard clinical protocols and conventional multi‐channel receive arrays that have been routinely equipped in clinical settings, thus eliminating the need for specialized RF sequence/coil configurations. Compared with the original wEPT method, the network generates accurate water content maps that effectively eliminate the influence of and by incorporating data mismatch with electrodynamic constraints derived from the Helmholtz equation. Subsequent regression analysis develops a broad relationship between water content and EPs across various types of brain tissue. A series of numerical simulations was conducted at 7 T to assess the feasibility and performance of the method, which encompassed four normal head models and models with tumorous tissues incorporated, and the results showed normalized mean square error below 1.0% in water content, below 11.7% in conductivity, and below 1.1% in permittivity reconstructions for normal brain tissues. Moreover, in vivo validations conducted over five healthy subjects at both 3 and 7 T showed reasonably good consistency with empirical EPs values across the white matter, gray matter, and cerebrospinal fluid. The PIN‐wEPT method, with its demonstrated efficacy, flexibility, and compatibility with current MRI scanners, holds promising potential for future clinical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Xx.发布了新的文献求助10
1秒前
大大关注了科研通微信公众号
1秒前
稚祎完成签到 ,获得积分10
1秒前
1秒前
CodeCraft应助东东采纳,获得10
2秒前
3秒前
叽里咕噜完成签到 ,获得积分10
4秒前
田様应助zccc采纳,获得10
5秒前
隐形的雁完成签到,获得积分10
5秒前
追寻的秋玲完成签到,获得积分10
6秒前
李繁蕊发布了新的文献求助10
6秒前
7秒前
舒心的紫雪完成签到 ,获得积分10
8秒前
8秒前
10秒前
10秒前
11秒前
不上课不行完成签到,获得积分10
12秒前
再干一杯完成签到,获得积分10
12秒前
13秒前
汉堡包应助rudjs采纳,获得10
14秒前
14秒前
zsyzxb发布了新的文献求助10
15秒前
东东发布了新的文献求助10
15秒前
zena92发布了新的文献求助10
16秒前
锤子米完成签到,获得积分10
16秒前
16秒前
赤练仙子完成签到,获得积分10
18秒前
MnO2fff应助zsyzxb采纳,获得20
21秒前
kingwill应助zsyzxb采纳,获得20
21秒前
顺利鱼完成签到,获得积分10
22秒前
24秒前
25秒前
Xx.完成签到,获得积分10
26秒前
星辰大海应助内向凌兰采纳,获得10
26秒前
26秒前
wuzhizhiya完成签到,获得积分10
27秒前
28秒前
rudjs发布了新的文献求助10
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808