亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Ground motion prediction model for shallow crustal earthquakes in Japan based on XGBoost with Bayesian optimization

残余物 超参数 随机森林 人工神经网络 标准差 计算机科学 均方误差 人工智能 算法 数学 统计
作者
Haotian Dang,Zifa Wang,Dengke Zhao,Xiangqi Wang,Zhaoyan Li,Dongliang Wei,Jianming Wang
出处
期刊:Soil Dynamics and Earthquake Engineering [Elsevier]
卷期号:177: 108391-108391 被引量:8
标识
DOI:10.1016/j.soildyn.2023.108391
摘要

Ground motion prediction is an important and complex research subject in earthquake engineering and traditional approaches based on statistical regression have much room for improvement in prediction accuracy. Utilizing the 67,164 ground motion records from KiK-net and K-Net for 777 shallow crustal earthquakes between 1997 and 2019 in Japan, this paper proposes a ground motion prediction model XGBoost-SC based on the machine learning algorithm of eXtreme Gradient Boosting (XGBoost) for Japan. Magnitude, focal depth, hypo-central distance, Vs30, site altitude, and focal mechanism were used as the feature parameters, and XGBoost, Random Forest, and Deep Neural Networks (DNN) algorithms were selected for model training while Bayesian optimization was used to search for optimized hyperparameters to improve the prediction accuracy. XGBoost algorithm was selected for further study based on the comparison of results from the three algorithms. Residual change with magnitude and hypo-central distance, the probability distribution of residuals, residual standard deviation (σ), residual mean squared error (MSE), and Pearson correlation coefficient (R) were used as the evaluation parameters, and a comparison study was performed against the ground motion prediction equation based on traditional approaches. Actual earthquake events were selected to compare the prediction results against the observation records. To further validate and explain the proposed model, SHapley Additive exPlanations (SHAP) analysis was performed to explain the impact of selected feature parameters on the proposed model. The results demonstrate that the proposed XGBoost-SC model has good prediction stability for all periods, and its residual errors are smaller than those of other models. Therefore, the proposed model can better reflect the ground motion attenuation for shallow crustal earthquakes in Japan and can serve as a better model for ground motion prediction in future aseismic design and earthquake disaster mitigation efforts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
fangjc1024完成签到,获得积分10
6秒前
10秒前
王福栋完成签到,获得积分10
13秒前
你hao发布了新的文献求助10
16秒前
你hao完成签到,获得积分10
24秒前
酷波er应助如沐春风采纳,获得10
52秒前
lixuebin完成签到 ,获得积分10
57秒前
1分钟前
1分钟前
如沐春风发布了新的文献求助10
1分钟前
yff发布了新的文献求助10
1分钟前
Lshyong完成签到 ,获得积分10
1分钟前
1分钟前
gy完成签到,获得积分10
2分钟前
李爱国应助ektyz采纳,获得10
2分钟前
泰哥完成签到,获得积分20
2分钟前
2分钟前
ektyz发布了新的文献求助10
2分钟前
中西西完成签到,获得积分10
2分钟前
中西西发布了新的文献求助200
3分钟前
3分钟前
泰哥发布了新的文献求助10
3分钟前
asdfqaz完成签到,获得积分10
3分钟前
1111完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
义气的元柏完成签到 ,获得积分10
4分钟前
年年有余完成签到,获得积分10
4分钟前
Shicheng完成签到,获得积分10
4分钟前
Easypass完成签到 ,获得积分10
4分钟前
4分钟前
5分钟前
5分钟前
与山发布了新的文献求助10
5分钟前
汉堡包应助与山采纳,获得10
5分钟前
lovelife完成签到,获得积分10
5分钟前
allrubbish完成签到,获得积分10
5分钟前
打打应助科研通管家采纳,获得30
6分钟前
领导范儿应助科研通管家采纳,获得10
6分钟前
6分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146703
求助须知:如何正确求助?哪些是违规求助? 2798015
关于积分的说明 7826542
捐赠科研通 2454516
什么是DOI,文献DOI怎么找? 1306346
科研通“疑难数据库(出版商)”最低求助积分说明 627704
版权声明 601522