Constructing Built‐In Electric Field in NiCo2O4‐CeO2 Heterostructures to Regulate Li2O2 Formation Routes at High Current Densities

阴极 成核 密度泛函理论 异质结 电场 催化作用 材料科学 电流密度 工作职能 化学物理 金属 化学工程 纳米技术 物理化学 物理 计算化学 化学 光电子学 热力学 量子力学 生物化学 冶金 工程类
作者
Renshu Huang,Zhixiang Zhai,Xingfa Chen,Xincheng Liang,Tianqi Yu,Yueyao Yang,Bin Li,Shibin Yin
出处
期刊:Small [Wiley]
卷期号:20 (30) 被引量:5
标识
DOI:10.1002/smll.202310808
摘要

Abstract Developing catalysts with suitable adsorption energy for oxygen‐containing intermediates and elucidating their internal structure‐performance relationships are essential for the commercialization of Li–O 2 batteries (LOBs), especially under high current densities. Herein, NiCo 2 O 4 ‐CeO 2 heterostructure with a spontaneous built‐in electric field (BIEF) is designed and utilized as a cathode catalyst for LOBs at high current density. The driving mechanism of electron pumping/accumulation at heterointerface is studied via experiments and density functional theory (DFT) calculations, elucidating the growth mechanism of discharge products. The results show that BIEF induced by work function difference optimizes the affinity for LiO 2 and promotes the formation of nano‐flocculent Li 2 O 2 , thus improving LOBs performance at high current density. Specifically, NiCo 2 O 4 ‐CeO 2 cathode exhibits a large discharge capacity (9546 mAh g −1 at 4000 mA g −1 ) and high stability (>430 cycles at 4000 mA g −1 ), which are better than the majority of previously reported metal‐based catalysts. This work provides a new method for tuning the nucleation and decomposition of Li 2 O 2 and inspires the design of ideal catalysts for LOBs to operate at high current density.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
12345完成签到,获得积分10
1秒前
Lialilico完成签到,获得积分10
2秒前
Akim应助我必做出来采纳,获得50
2秒前
3秒前
随机起的名完成签到,获得积分10
3秒前
Owen应助努力的小狗屁采纳,获得10
4秒前
4秒前
vuig完成签到 ,获得积分10
4秒前
哈哈哈的一笑完成签到,获得积分10
4秒前
4秒前
Emma完成签到,获得积分10
4秒前
5秒前
5秒前
研友_VZG7GZ应助不吃香菜采纳,获得10
5秒前
huanger完成签到,获得积分10
5秒前
Tayzon完成签到 ,获得积分10
5秒前
我测你码完成签到,获得积分10
5秒前
超级宇宙二踢脚完成签到,获得积分10
6秒前
6秒前
7秒前
大气小新完成签到,获得积分10
7秒前
ILS完成签到 ,获得积分10
7秒前
Orange应助澜生采纳,获得10
8秒前
lin完成签到,获得积分10
9秒前
Ares发布了新的文献求助10
9秒前
9秒前
谭平完成签到 ,获得积分10
9秒前
10秒前
淡定紫菱完成签到,获得积分10
10秒前
所所应助HYH采纳,获得20
10秒前
10秒前
木香完成签到,获得积分10
11秒前
尘雾发布了新的文献求助10
12秒前
13秒前
高鑫完成签到 ,获得积分10
13秒前
英姑应助dd采纳,获得10
13秒前
Chan0501关注了科研通微信公众号
14秒前
14秒前
研友_LMNjkn发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794