Surrogate optimization of lithium-ion battery coating process

涂层 计算流体力学 无量纲量 泥浆 材料科学 机械工程 替代模型 沉积(地质) 复制 计算机科学 工艺工程 模拟 数学优化 工程类 机械 复合材料 数学 物理 航空航天工程 地质学 统计 古生物学 沉积物
作者
Seung-Kwon Seo,H.S. Kim,Amin Samadi,Mohamed Atwair,Jeongbyeol Hong,Byungchan Kang,Hyungjoo Yim,Chul‐Jin Lee
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:447: 141064-141064 被引量:6
标识
DOI:10.1016/j.jclepro.2024.141064
摘要

In the Li-ion battery manufacturing process, uniform coating thickness is essential for ensuring high-quality electrode production. Elevated or scalloped coating edges are often formed because of inadequate coater design. Traditional coater design approaches entail resource-intensive coating experiments or time-consuming simulations. In this study, we present a five-step optimization framework to achieve uniform coating thickness in the cross-web direction. First, we conducted computational fluid dynamics (CFD) simulations by using a preselected set of 13 variables related to coater design and rheological properties of the slurry. Non-uniform coating characteristics were captured as dimensionless features derived from the CFD data. Then, we constructed a surrogate model to accurately replicate the CFD simulation and evaluate the dimensionless features. The surrogate model exhibited a high level of consistency with the original CFD data. The importance of the design variables was assessed in terms of accumulated local effects and Shapley values. On the basis of this assessment, six design variables related to coater geometry were selected to determine the optimal coater design given the coater width and slurry properties. Finally, genetic algorithms were employed to minimize the dimensionless features associated with defective coating edges. Statistically, the solutions reduced the number of dimensionless edge features by more than 90%. A comparison between the velocity profile data obtained by CFD and the surrogate model for the optimized solutions demonstrated the successful elimination of super-elevated edges in the coating. The proposed framework offers an effective optimization strategy that can be applied to practical coater design to minimize the occurrence of edge defects in the battery manufacturing industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lucky完成签到 ,获得积分10
刚刚
李健应助小海棉采纳,获得10
1秒前
瘦瘦雅香完成签到,获得积分10
1秒前
1秒前
敏感远锋完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
melody发布了新的文献求助10
4秒前
善学以致用应助香蕉梨愁采纳,获得10
4秒前
ll发布了新的文献求助20
5秒前
xxx发布了新的文献求助10
5秒前
6秒前
7秒前
7秒前
酷波er应助千凡采纳,获得10
7秒前
7秒前
superxiao应助标致断天采纳,获得10
7秒前
钱多多完成签到 ,获得积分10
8秒前
Or1ll完成签到,获得积分10
8秒前
8秒前
善善完成签到 ,获得积分10
9秒前
silk发布了新的文献求助10
9秒前
pyh发布了新的文献求助10
10秒前
10秒前
11秒前
ding应助科研通管家采纳,获得10
11秒前
香蕉诗蕊应助科研通管家采纳,获得10
11秒前
Criminology34应助科研通管家采纳,获得10
11秒前
香蕉诗蕊应助科研通管家采纳,获得10
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
香蕉诗蕊应助科研通管家采纳,获得10
11秒前
BowieHuang应助科研通管家采纳,获得10
11秒前
luo应助科研通管家采纳,获得10
11秒前
阿盛完成签到,获得积分10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
香蕉诗蕊应助科研通管家采纳,获得10
12秒前
12秒前
英姑应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
猪猪hero应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618349
求助须知:如何正确求助?哪些是违规求助? 4703244
关于积分的说明 14921791
捐赠科研通 4757233
什么是DOI,文献DOI怎么找? 2550059
邀请新用户注册赠送积分活动 1512904
关于科研通互助平台的介绍 1474299