Universal ion chromatography method for anions in active pharmaceutical ingredients enabled by computer-assisted separation modeling

化学 分析物 色谱法 离子色谱法 活性成分 溶剂 柱色谱法 有机化学 生物信息学 生物
作者
Tianyu Yuan,Dolee Merai,Matthew J. Gunsch,Ryan M. Peters,Sachin Lohani,Frank Bernardoni,Michael A. Zompa,Imad Haidar Ahmad,Erik L. Regalado,Christopher A. Pohl
出处
期刊:Journal of Pharmaceutical and Biomedical Analysis [Elsevier BV]
卷期号:241: 115923-115923
标识
DOI:10.1016/j.jpba.2023.115923
摘要

Ion Chromatography (IC) is one of the most widely used methods for analyzing ionic species in pharmaceutical samples. A universal IC method that can separate a wide range of different analytes is highly desired as it can save a lot of time for method development and validation processes. Herein we report the development of a universal method for anions in active pharmaceutical ingredients (APIs) using computer-assisted chromatography modeling tools. We have screened three different IC columns (Dionex IonPac AS28-Fast 4 µm, AS19 4 µm and AS11-HC 4 µm) to determine the best suitable column for universal IC method development. A universal IC method was then developed using an AS11-HC 4 µm column to separate 31 most common anionic substances in 36 mins. This method was optimized using LC Simulator and a model which precisely predicts the retention behavior of 31 anions was established. This model demonstrated an excellent match between predicted and experimental analyte retention time (R2 =0.999). To validate this universal IC method, we have studied the stability of sulfite and sulfide analytes in ambient conditions. The method was then validated for a subset of 29 anions using water and organic solvent/water binary solvents as diluents for commercial APIs. This universal IC method provides an efficient and simple way to separate and analyze common anions in APIs. In addition, the method development process combined with LC simulator modeling can be effectively used as a starting point during method development for other ions beyond those investigated in this study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Singularity应助李二牛采纳,获得10
刚刚
Polong完成签到,获得积分10
1秒前
1秒前
Timon完成签到,获得积分10
1秒前
2秒前
xzn1123完成签到,获得积分0
2秒前
syqlyd完成签到 ,获得积分10
3秒前
Hello应助xixi采纳,获得10
4秒前
超大杯冰摇红莓黑加仑茶完成签到,获得积分10
4秒前
江水完成签到,获得积分10
4秒前
大模型应助牧童采纳,获得10
4秒前
shezhinicheng完成签到 ,获得积分10
5秒前
冲冲冲完成签到,获得积分10
7秒前
高挑的小蕊完成签到,获得积分10
7秒前
龙1完成签到,获得积分10
7秒前
平常康完成签到,获得积分10
7秒前
guan发布了新的文献求助20
7秒前
xbw1120发布了新的文献求助10
8秒前
利利完成签到,获得积分10
8秒前
松鼠15111完成签到,获得积分10
8秒前
xie123完成签到,获得积分20
10秒前
sun完成签到,获得积分10
10秒前
inches完成签到 ,获得积分10
11秒前
12秒前
shuangma完成签到,获得积分10
12秒前
12秒前
人生如梦应助飞云采纳,获得10
13秒前
豆豆完成签到 ,获得积分10
13秒前
lilian发布了新的文献求助10
14秒前
yyz关注了科研通微信公众号
14秒前
特安谭发布了新的文献求助10
15秒前
实验结果猴猴看完成签到,获得积分10
15秒前
槿曦完成签到 ,获得积分10
16秒前
11111发布了新的文献求助10
17秒前
科目三应助高挑的小蕊采纳,获得10
17秒前
赵赵赵完成签到,获得积分10
17秒前
四夕完成签到 ,获得积分10
17秒前
17秒前
gsgg发布了新的文献求助10
18秒前
谦让的莆完成签到 ,获得积分10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960387
求助须知:如何正确求助?哪些是违规求助? 3506503
关于积分的说明 11130906
捐赠科研通 3238717
什么是DOI,文献DOI怎么找? 1789884
邀请新用户注册赠送积分活动 871982
科研通“疑难数据库(出版商)”最低求助积分说明 803118