A Hybrid LSTM Network for Long-Range Vehicle Trajectory Prediction Based on Adaptive Chirp Mode Decomposition

弹道 计算机科学 航程(航空) 人工神经网络 人工智能 算法 工程类 天文 物理 航空航天工程
作者
Zhuoer Wang,Hongjuan Zhang,Hongjuan Zhang,Bijun Li,Yongxing Cao,Menghua Jiang
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (4): 5359-5369 被引量:2
标识
DOI:10.1109/jsen.2023.3347705
摘要

Vehicle trajectory prediction is essential for intelligent transportation system and smart city, but the prediction of long-range trajectory is still challenging. Since the speed of a moving vehicle is relatively high, coordinates of discrete trajectory points may vary from 0 to 10km in long-range trajectory prediction. Moreover, the vehicle trajectory contains random noises due to the instability of GPS signals in urban areas and the error accumulation effect of the other sensors for the vehicle positioning. To address this issue, the discrete trajectory data is treated as signal and multiple signal components are extracted from the original data through the adaptive chirp mode decomposition (ACMD) algorithm to capture spatial information at different spatial scales and filter out chaotic noises caused by other assisted positioning sensors simultaneously. To overcome error propagation of LSTM, since the quality of long-range predictions relies on short-range prediction accuracies, a Hybrid LSTM model is proposed based on a combination network of forward LSTM, BILSTM and backward LSTM. Taking advantage of an Improved Whale Optimization Algorithm (IWOA) to optimize the hyperparameters of the Hybrid-LSTM model, the embedding layer decomposes the input trajectories and further learns and trains through the Hybrid LSTM layer to effectively overcome the large prediction errors. Extensive experiments based on our dataset and a public taxi trajectory dataset show that the Hybrid LSTM model based on ACMD and IWOA outperforms the existing state-of-the-art methods in terms of accuracy and stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
charon完成签到,获得积分20
1秒前
bkagyin应助fff采纳,获得10
1秒前
小宇发布了新的文献求助10
2秒前
2秒前
1111发布了新的文献求助10
2秒前
单薄凌蝶完成签到,获得积分10
3秒前
3秒前
哄哄完成签到,获得积分10
3秒前
求知若渴完成签到,获得积分10
3秒前
ysf完成签到,获得积分10
4秒前
如意航空完成签到,获得积分10
5秒前
洛杉矶的奥斯卡完成签到,获得积分10
5秒前
yxy完成签到,获得积分10
5秒前
5秒前
Anoxia完成签到,获得积分10
6秒前
wangwenzhe完成签到,获得积分20
6秒前
KX完成签到,获得积分10
6秒前
意大利完成签到,获得积分10
6秒前
weiwei完成签到,获得积分10
6秒前
迟大猫应助波波采纳,获得10
6秒前
Rebekah完成签到,获得积分10
7秒前
躺平科研大叔完成签到,获得积分10
7秒前
无花果应助调皮冰旋采纳,获得10
7秒前
HU发布了新的文献求助10
7秒前
happyboy2008完成签到,获得积分10
7秒前
科研通AI5应助研友_8RlQ2n采纳,获得10
7秒前
Anoxia发布了新的文献求助30
8秒前
两酒窝完成签到,获得积分10
9秒前
七十三度完成签到,获得积分10
9秒前
9秒前
嘟嘟金子发布了新的文献求助10
10秒前
称心砖头发布了新的文献求助10
10秒前
10秒前
哈哈完成签到,获得积分10
11秒前
今后应助小宇采纳,获得10
11秒前
领导范儿应助Khr1stINK采纳,获得10
11秒前
汉堡包应助羊羊采纳,获得10
11秒前
KX发布了新的文献求助10
12秒前
落晨发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678