A Hybrid LSTM Network for Long-Range Vehicle Trajectory Prediction Based on Adaptive Chirp Mode Decomposition

弹道 计算机科学 航程(航空) 人工神经网络 人工智能 算法 工程类 物理 天文 航空航天工程
作者
Zhuoer Wang,Hongjuan Zhang,Hongjuan Zhang,Bijun Li,Yongxing Cao,Menghua Jiang
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (4): 5359-5369 被引量:2
标识
DOI:10.1109/jsen.2023.3347705
摘要

Vehicle trajectory prediction is essential for intelligent transportation system and smart city, but the prediction of long-range trajectory is still challenging. Since the speed of a moving vehicle is relatively high, coordinates of discrete trajectory points may vary from 0 to 10km in long-range trajectory prediction. Moreover, the vehicle trajectory contains random noises due to the instability of GPS signals in urban areas and the error accumulation effect of the other sensors for the vehicle positioning. To address this issue, the discrete trajectory data is treated as signal and multiple signal components are extracted from the original data through the adaptive chirp mode decomposition (ACMD) algorithm to capture spatial information at different spatial scales and filter out chaotic noises caused by other assisted positioning sensors simultaneously. To overcome error propagation of LSTM, since the quality of long-range predictions relies on short-range prediction accuracies, a Hybrid LSTM model is proposed based on a combination network of forward LSTM, BILSTM and backward LSTM. Taking advantage of an Improved Whale Optimization Algorithm (IWOA) to optimize the hyperparameters of the Hybrid-LSTM model, the embedding layer decomposes the input trajectories and further learns and trains through the Hybrid LSTM layer to effectively overcome the large prediction errors. Extensive experiments based on our dataset and a public taxi trajectory dataset show that the Hybrid LSTM model based on ACMD and IWOA outperforms the existing state-of-the-art methods in terms of accuracy and stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
我是老大应助ShangXuanyue采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得30
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
玄学小生完成签到 ,获得积分20
3秒前
4秒前
4秒前
LQ发布了新的文献求助20
5秒前
jy完成签到,获得积分10
5秒前
8秒前
8秒前
無心完成签到,获得积分20
10秒前
11秒前
优雅傲之完成签到,获得积分10
12秒前
类人幼崽发布了新的文献求助10
13秒前
Lucas应助Cassie采纳,获得10
14秒前
奋斗裘发布了新的文献求助10
15秒前
HAPPY发布了新的文献求助10
15秒前
15秒前
兴奋蜡烛完成签到,获得积分10
15秒前
BetterH完成签到 ,获得积分10
16秒前
16秒前
17秒前
木子李完成签到,获得积分10
18秒前
曾经诗槐完成签到,获得积分10
19秒前
VS岚兔子发布了新的文献求助10
20秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136325
求助须知:如何正确求助?哪些是违规求助? 2787443
关于积分的说明 7781374
捐赠科研通 2443393
什么是DOI,文献DOI怎么找? 1299137
科研通“疑难数据库(出版商)”最低求助积分说明 625359
版权声明 600939